Декодеры. Дешифратор-преобразователь в семисегментный код Управление семисегментными индикаторами

Дешифраторы, как и шифраторы преобразуют один код на своем входе в другой код, который и подают на выход. Одним из частных случаев использование дешифратора является его совместная работа с семисегментным индикатором. Обычно дешифратор преобразует двоичное число в сигнал на одном из своих выходов, но для этого конкретного случая используются специальные дешифраторы, которые преобразуют двоичный код на своем входе в код семисегментного индикатора на выходе. Работу данного типа приборов рассмотрим на примере микросхемы К514ИД2 .

Данная микросхема имеет четыре входа D1-D4, и семь выходов: a, b, c, d, e, f, g, для подключения к соответствующим сегментам семисегментного индикатора. Вывод R - разрешение работы, для того, что бы дешифратор реагировал на сигналы на своих входах, на выводе R должен быть высокий логический уровень.

Следует особо отметить, что питание подается на 14 выход микросхемы К514ИД2, общий провод 6. Питание осуществляется от стабилизированного источника питания напряжением 5В.

Счетные импульсы будем подавать с мультивибратора , счет их будет осуществляться счетчиком с недвоичным коэффициентом пересчета , к выводам которого подключен дешифратор семисегментного индикатора.

Данная электрическая принципиальная схема получается достаточно сложной, поэтому, даже будучи правильно собранной, она иногда отказывается правильно работать из-за обилия штыревых непаянных соединений. Как говориться, электроника это наука о контактах. Очень многие проблемы в электротехнике и электронике сводятся к тому, что контакт есть там, где не надо или контакта нет там, где надо.

Опыт показал, что применение в лабораторных работах выпускаемых промышленностью семисегментных индикаторов неоправданно из-за того, что такие индикаторы обладают недостаточной «студентоустойчивостью», при неправильном подключении они быстро выходят из строя. Поэтому были разработаны модули, имитирующие работу семисегментных индикаторов на базе светодиодов АЛ307Б . По этой причине цифры на индикаторе выглядят несколько непривычно, но общий принцип работы семисегментного индикатора уяснить вполне можно.

Видео

Литература

  1. https://kiloom.ru/spravochnik-radiodetalej/microsxema/k514id2-kr514id2.html
  2. http://ru.pc-history.com/mikrosxema-k514id2.html
  3. https://eandc.ru/pdf/mikroskhema/k514id2.pdf
  4. Ямпольский В.С. Основы автоматики и электронно-вычислительной техники - М. Просвещение, 1991
  5. http://сайт/publ/nachinajushhim/multivibrator_na_ehlementakh_i_ne/5-1-0-1366
  6. http://сайт/publ/nachinajushhim/schetchik_na_mikroskheme/5-1-0-1372
  7. http://сайт/publ/nachinajushhim/samodelnye_moduli_dlja_izuchenija_mikroskhem/5-1-0-1352

Декодеры позволяют преобразовывать одни виды двоичных кодов в другие. Например, преобразовывать двоичный код в линейный восьмеричный или шестнадцатеричный. Преобразование производится по правилам, описанным в таблицах истинности, поэтому построение не представляет трудностей. Для построения дешифратора можно воспользоваться правилами .

Десятичный декодер

Рассмотрим пример разработки декодера двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. Это классический пример, иллюстрирующий, что нулями и единицами описываются не только двоичные коды. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Около каждого разряда десятичного кода может быть подписана десятичная цифра, которую представляет логическая единица в этом разряде. Сигнал с этих выводов дешифратора можно подать на . В простейшем случае над светодиодом можно просто подписать индицируемую цифру. В более сложных вариантах индикатор можно выполнить в виде десятичной цифры.

На входе дешифратора двоичный код записывается в соответствии с правилами . Таблица истинности десятичного декодера приведена в таблице 1.

Таблица 1. Таблица истинности десятичного декодера.
Входы Выходы
8 4 2 1 0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1

В соответствии с принципами построения схемы по произвольной таблице истинности получим схему декодера, реализующего таблицу истинности, приведённую в таблице 1. Его схема приведена на рисунке 1.


Рисунок 1. Принципиальная схема двоично-десятичного декодера

Как видно на этой схеме, для реализации каждой строки таблицы истинности (минтерма) потребовался логический элемент "4И". Логический элемент "ИЛИ", необходимый для реализации СДНФ, не потребовался, так как в таблице истинности на каждом выходе (столбце) присутствует только одна логическая единица.

Условно-графическое обозначение микросхемы дешифратора на приведено на рисунке 2. На этом рисунке приведено обозначение двоично-десятичного декодера, полная внутренняя принципиальная схема которого изображена на рисунке 1.


Рисунок 2. десятичного декодера

Точно таким же образом можно получить принципиальную схему и для любого другого декодера. Наиболее распространены схемы восьмеричных и шестнадцатеричных декодеров. Для применения в схемах индикации в настоящее время они практически не используются. В основном такие, или более сложные (с большим количеством выходов) декодены используются как составная часть более сложных цифровых модулей.

Семисегментный декодер

Для отображения десятичных и шестнадцатеричных цифр часто используется . Внешний вид семисегментного индикатора и название его сегментов приведено на рисунке 3.


Рисунок 3. Внешний вид семисегментного индикатора и название его сегментов

Для отображения на таком индикаторе цифры 0 достаточно зажечь сегменты a, b, c, d, e, f. Для отображения цифры "1" зажигают сегменты b и c. Точно таким же образом можно получить изображения всех остальных десятичных или шестнадцатеричных цифр. Все комбинации двоичных бит, необходимых для получения их изображений получили название семисегментного кода.

Составим таблицу истинности дешифратора, который позволит преобразовывать двоичный код в семисегментный. Пусть сегменты зажигаются нулевым потенциалом. Тогда таблица истинности семисегментного дешифратора примет вид, приведенный в таблице 2. Конкретное значение сигналов на выходе дешифратора зависит от схемы подключения сегментов индикатора к выходу микросхемы. Эти схемы мы рассмотрим позднее, в главе, посвящённой отображению различных видов информации.

Таблица 2. Таблица истинности семисегментного декодера.

Входы Выходы
8 4 2 1 a b c d e f g
0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0

В соответствии с принципами построения схемы по произвольной таблицы истинности, получим принципиальную схему семисегментного декодера, реализующего таблицу истинности, приведённую в таблице 2. На этот раз не будем подробно расписывать процесс разработки схемы. Полученная принципиальная схема семисегментного декодера приведена на рисунке 4.


Рисунок 4. Принципиальная схема семисегментного декодера

Для облегчения понимания принципов работы схемы на выходе логических элементов "И" показаны номера строк таблицы истинности, реализуемые ими.

Например, на выходе сегмента "a" логическая единица появится только при подаче на вход комбинации двоичных сигналов 0001 (1) и 0100 (4). Это осуществляется объединением соответствующий цепей элементом "2ИЛИ". На выходе сегмента "b" логическая единица появится только при подаче на вход комбинации двоичных сигналов 0101 (5) и 0110 (6), и так далее.

В настоящее время семисегментные дешифраторы выпускаются в виде отдельных микросхем или используются в виде готовых блоков составе других микросхем. Условно-графическое обозначение микросхемы семисегментного дешифратора приведено на рисунке 5.


Рисунок 5. Условно-графическое обозначение семисегментного декодера

В качестве примера промышленного производства семисегментных декодеров можно назвать такие микросхемы отечественного производства как К176ИД3. В современных цифровых схемах семисегментные дешифраторы обычно входят в состав больших интегральных схем (ПЛИС или FPGA) или реализуются программно.

Литература:

Вместе со статьей "Дешифраторы (декодеры)" читают:

Законы алгебры логики позволяют преобразовывать логические функции. Логические функции преобразуются с целью их упрощения, а это ведет к упрощению цифровой схемы...
http://сайт/digital/AlgLog.php

Для реализации цифровых логических схем с произвольной таблицей истинности используется сочетание простейших логических элементов. Существует два способа синтеза цифровых схем, реализующих произвольную таблицу истинности...
http://сайт/digital/SintSxem.php

Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в...
http://сайт/digital/Coder.php

Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу...
http://сайт/digital/MS.php

Демультиплексорами называются устройства... Существенным отличием от мультиплексора является...
http://сайт/digital/DMS.php

Отчет о лабораторной работе

Тема: Исследование Работы дешифраторов

Цель: Исследовать работу шифраторов и дешифраторов

Оборудование: ПК, программное обеспечение: ОС Windows

Ход Работы

1. Исследовал работу Дешифратора на логических элементах

2. Преобразователь кода для семисегментного индикатора.

3. Дешифратор для 7-сегментного индикатора на микросхеме.

1.Дешифраторы
Я использовал простейшие логические элементы, которые можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Дещифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 5 10 =101 2 .

3. Дешифратор на логических элементах

Трехвходовый дешифратор на логических элементах «И» и «НЕ».



4. Преобразователь кода для семисегментного индикатора.

Дешифраторы и дисплейные дишеифраторы/формирователи формируют цифровые коды для семисегментного индикатора, и затем обеспечивают пеердачу кода на формирователь или непосредственно на дисплей. В семисегментном индикаторе десятичных цифр каждый сегмент (их семь) представляет собой отдельный светоизлучающий элемент (используется также буквенная идентификация сегментов, соответственно от a до g). Светящееся изображение цифр или знаков получается при подаче напряжения на определенные сегменты:
Такой преобразователь кода должен удовлетворять таблице истинности, приведенной ниже:


Дешифратор для 7-сегментного индикатора на логических элементах.

Дешифратор для 7-сегментного индикатора на микросхеме.

Данный дешифратор преобразует двоично-десятичный код (binary-decimal code), подаваемый на входы A,B,C,D, в код управления 7-сегментным индикатором. Двоично-десятичный код представляет собой упорядоченный по разрадам набор двоичных чисел, в котором разрядам приписаны следующие «веса» в порядке уменьшения старшинства. D – 8, С – 4, В – 2, A – 1. Поэтому данный код называют также кодом 8-4-2-1. Фактически в этом коде записаны десятичные числа от 0 до 15 во входных переменных таблицы истинности:



Дешифратор кода для 7-сегментного индикатора на микросхеме 7448

Вывод: Исследовал работу шифраторов и дешифраторов

1. Дешифраторы
Используя простейшие логические элементы, можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Шифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 5 10 =101 2 .
Дешифратор или декодер выполняет обратную по отношению к шифрованию операцию, т.е. преобразует двоичный код в десятичный. Входы дешифратора служат для подачи двоичных числе, а выходы последовательно нумеруются десятичными числами. При подаче на входы двоичного числа выходной сигнал появляется на выходе, который имеет номер соответствующего десятичного числа.
Существует два типа дешифраторов: логические дешифраторы и дисплейные дешифраторы/формирователи. Логические дешифраторы представляют собой схемы средней интеграции (микросхемы, имеющие с своем составе до 100 ЛЭ), управялемые адресом. Они выбирают и приводят в активное состояние конкретный выход определяемыый адресом. Дешифраторы применяются в структурах выборки адреса запоминающих устройства, разуплотнения маршрутизации данных и т.п.

В этой статье мы поговорим о цифровой индикации.
Семисегментные светодиодные индикаторы предназначены для отображения арабских цифр от 0 до 9 (рис.1).

Такие индикаторы бывают одноразрядные, которые отображают только одно число, но семисегментных групп, объединенных в один корпус может быть и больше (многоразрядные). В этом случае цифры разделяются децимальной точкой (рис.2)


Рис.2.

Индикатор называется семисегментным из-за того, что отображаемый символ строится из отдельных семи сегментов. Внутри корпуса такого индикатора находятся светодиоды, каждый из которых засвечивает свой сегмент.
Буквы и другие символы на таких индикаторах отображать проблематично, поэтому для этих целей используются 16-сегментные индикаторы.

Светодиодные индикаторы бывают двух типов.
В первом из них все катоды, т.е. отрицательные выводы всех светодиодов, объединены вместе и для них выделен соответствующий вывод на корпусе.
Остальные выводы индикатора соединены к аноду каждого из светодиодов (рис.3, а). Такая схема называется «схема с общим катодом».
Также существуют индикаторы, у которых светодиоды каждого из сегментов подключены по схеме с общим анодом (рис.3, б).


Рис.3.

Каждый сегмент обозначен соответствующей буквой. На рисунке 4 представлено их расположение.

Рис.4.

В качестве примера рассмотрим двухразрядный семисегментный индикатор GND-5622As-21 красного свечения. Кстати существуют и другие цвета, в зависимости от модели.
С помощью трехвольтовой батарейки можно включать сегменты, а если объединить группу выводов в кучку и подать на них питание, то можно даже отображать цифры. Но такой метод является неудобным, поэтому для управления семисегментными индикаторами используют регистры сдвига и дешифраторы. Также, нередко, выводы индикатора подключаются напрямую к выходам микроконтроллера, но лишь в том случае когда используются индикаторы с низким потреблением тока. На рисунке 5 представлен фрагмент схемы с использованием PIC16F876A.


Рис.5.

Для управления семисегментным индикатором часто используется дешифратор К176ИД2.
Эта микросхема способна преобразовать двоичный код, состоящий из нулей и единиц в десятичные цифры от 0 до 9.

Чтобы понять, как все это работает, нужно собрать простую схему (рис.6). Дешифратор К176ИД2 выполнен в корпусе DIP16. Он имеет 7 выходных вывода (выводы 9 - 15), каждый из которых предназначен для определенного сегмента. Управление точкой здесь не предусмотрено. Также микросхема имеет 4 входа (выводы 2 - 5) для подачи двоичного кода. На 16-й и 8-ой вывод подается плюс и минус питания соответственно. Остальные три вывода являются вспомогательными, о них я расскажу чуть позже.


Рис.6.

DD1 - К176ИД2
R1 - R4 (10 - 100 кОм)
HG1 - GND-5622As-21

В схеме присутствует 4 тумблера (можно любые кнопки), при нажатии на них на входы дешифратора подается логическая единица от плюса питания. Кстати питается сама микросхема напряжением от 3 до 15 Вольт. В данном примере вся схема питается от 9-вольтовой "кроны".

Также в схеме присутствует 4 резистора. Это, так называемые, подтягивающие резисторы. Они нужны, чтобы гарантировать на логическом входе низкий уровень, при отсутствии сигнала. Без них показания на индикаторе могут отображаться некорректно. Рекомендуется использовать одинаковые сопротивления от 10 кОм до 100 кОм.

На схеме выводы 2 и 7 индикатора HG1 не подключены. Если подключить к минусу питания вывод DP, то будет светиться децимальная точка. А если подать минус на вывод Dig.2, то будет светиться и вторая группа сегментов (будет показывать тот же символ).

Входы дешифратора устроены так, что для отображения на индикаторе чисел 1, 2, 4 и 8 требуется нажатие лишь одной кнопки (на макете установлены тумблеры, соответствующие входам D0, D1, D2 и D3). При отсутствии сигнала отображается цифра ноль. При подаче сигнала на вход D0 отображается цифра 1. И так далее. Для отображения других цифр требуется нажатие комбинации тумблеров. А какие именно нужно нажимать нам подскажет таблица 1.


Таблица 1.

Чтобы отобразить цифру "3" необходимо логическую единицу подать на вход D0 и D1. Если подать сигнал на D0 и D2, то отобразится цифра "5" (рис.6).


Рис.6.

Здесь представлена расширенная таблица, в которой мы видим не только ожидаемую цифру, но и те сегменты (a - g), которые составят эту цифру.


Таблица 2.

Вспомогательными являются 1, 6 и 7-ой выводы микросхемы (S, M, К соответственно).

На схеме (рис.6) 6-ой вывод "М" заземлен (на минус питания) и на выходе микросхемы присутствует положительное напряжение для работы с индикатором с общим катодом. Если используется индикатор с общим анодом, то на 6-ой вывод следует подать единицу.

Если на 7-ой вывод "К" подать логическую единицу, то знак индикатора гасится, ноль разрешает индикацию. В схеме данный вывод заземлен (на минус питания).

На первый вывод дешифратора подана логическая единица (плюс питания), что позволяет отображать преобразованный код на индикатор. Но если подать на данный вывод (S) логический ноль, то входы перестанут принимать сигнал, а на индикаторе застынет текущий отображаемый знак.

Стоит заметить одну интересную вещь: мы знаем, что тумблер D0 включает цифру "1", а тублер D1 цифру "2". Если нажать оба тумблера, то высветится цифра 3 (1+2=3). И в других случаях на индикатор выводится сумма цифр, составляющих эту комбинацию. Приходим к выводу, что входы дешифратора расположены продуманно и имеют очень логичные комбинации.

Также вы можете посмотреть видео к этой статье.

Для отображения десятичных и шестнадцатеричных цифр часто используется семисегментный индикатор. Изображение семисегментного индикатора и название его сегментов приведено на рисунке 3.

Рисунок 3.3 Изображение семисегментного индикатора и название его сегментов.

Для изображения на таком индикаторе цифры 0 достаточно зажечь сегменты a, b, c, d, e, f. Для изображения цифры "1" зажигают сегменты b и c. Точно таким же образом можно получить изображения всех остальных десятичных или шестнадцатеричных цифр. Все комбинации таких изображений получили название семисегментного кода.

Составим таблицу истинности дешифратора, который позволит преобразовывать двоичный код в семисегментный. Пусть сегменты зажигаются нулевым потенциалом. Тогда таблица истинности семисегментного дешифратора примет вид, приведенный в таблице 3.2. Конкретное значение сигналов на выходе дешифратора зависит от схемы подключения сегментов индикатора к выходу микросхемы. Эти схемы мы рассмотрим позднее, в главе, посвящённой отображению различных видов информации.

Таблица 3.2. Таблица истинности семисегментного декодера.

Входы Выходы
a b c d e f g

В соответствии с принципами построения схемы по произвольной таблицы истинности, получим принципиальную схему семисегментного дешифратора (декодера), реализующего таблицу истинности, приведённую в таблице 2. На этот раз не будем подробно расписывать процесс разработки схемы. Полученная принципиальная схема семисегментного дешифратора приведена на рисунке 3.4.


Рисунок 3.4. Принципиальная схема семисегментного дешифратора (декодера).

Для облегчения понимания принципов работы схемы на выходе логических элементов "И" показаны номера строк таблицы истинности, реализуемые ими.

Например, на выходе сегмента a логическая единица появится только при подаче на вход комбинации двоичных сигналов 0001 (1) и 0100 (4). Это осуществляется объединением соответствующий цепей элементом "2ИЛИ". На выходе сегмента b логическая единица появится только при подаче на вход комбинации двоичных сигналов 0101 (5) и 0110 (6), и так далее.

В настоящее время семисегментные дешифраторы выпускаются в виде отдельных микросхем или используются в виде готовых блоков составе других микросхем. Условно-графическое обозначение микросхемы семисегментного дешифратора приведено на рисунке 3.5.