Видеомониторы и видеоадаптеры. Жидкокристаллические дисплеи

При подготовке тестирования ЖК-мониторов с диагональю 19 дюймов мы столкнулись с необычайно высоким интересом к данной теме. Проблема выбора, которая никогда не была легкой, в данном случае усугубляется большим разнообразием моделей, цена которых лежит в широких пределах – от $300 до $800 при сравнимых (на первый взгляд) характеристиках. Для того чтобы понять, чем же они отличаются между собой и какой продукт предпочесть, нам предстоит рассмотреть устройство современного ЖК-дисплея.

Мы не будем подробно останавливаться на базовых принципах функционирования ЖК-матриц, полагая, что большинство наших читателей уже знакомо с ними в достаточной степени. лишь, что в них используется явление поворота жидкими кристаллами плоскости поляризации светового потока. Но технологии и подходы, применяемые различными производителями к решению возникающих при создании мониторов проблем, подчас значительно отличаются.

Интерфейсы

В наследство от эпохи ЭЛТ-мониторов нам остался аналоговый интерфейс RGB VGA D-sub. Видеоадаптер преобразует данные кадрового буфера из цифрового вида в аналоговый, а электроника ЖК-монитора, со своей стороны, вынуждена выполнять обратное, аналого-цифровое преобразование. Несложно понять, что такие избыточные операции как минимум не улучшают качества изображения, к тому же они требуют дополнительных затрат для своей реализации. Поэтому с повсеместным распространением ЖК-дисплеев интерфейс VGA D-sub не имеет будущего и в скором времени его вытеснит цифровой DVI.

Не стоит думать, что в дешевых мониторах производители намеренно не реализуют поддержку DVI-интерфейса, ограничиваясь лишь VGA D-sub. Просто для этого требуется применение специального TMDS-приемника со стороны монитора, и себестоимость устройства с поддержкой как аналогового, так и цифрового интерфейсов по сравнению с вариантом с единственным аналоговым входом будет выше.

Электроника

Если разобрать корпус современного ЖК-монитора и взглянуть на плату управляющей электроники, поначалу может возникнуть легкое недоумение. В самом деле, даже плата блока питания, расположенная рядом, выглядит гораздо внушительнее!

Функциональную схему блока обработки изображения в ЖК-дисплее простой не назовешь, и лаконичность его платы объясняется иначе: благодаря подходу System-on-a-Chip большинство функций (от аналого-цифрового преобразования RGB-сигнала, его масштабирования, обработки и вплоть до формирования выходных сигналов LVDS) выполняется единственной ИС с высокой степенью интеграции, носящей название Display Engine. Среди производителей мониторов сегодня весьма популярны ИС от ST Microelectronics (семейства ADE3xxx), работающие под управлением 8-битовых микроконтроллеров.

Блок ЖК-матрицы также выглядит довольно простым, и его плата обычно содержит единственную схему управления, так называемый драйвер матрицы, в который интегрированы приемник LVDS и драйверы истоков и затворов, преобразующие видеосигнал в адресацию конкретных пикселов по столбцам и строкам. В целом же доля электронных компонентов в себестоимости монитора, по оценкам экспертов IDC, составляет всего 11% – нетрудно догадаться, что большинство затрат приходится на саму панель TFT LCD.

В блок ЖК-матрицы входит также система ее подсветки, которая, за редкими исключениями, выполнена на газоразрядных лампах с холодным катодом (Cold Cathode Fluorescent Lamp, CCFL). Высокое напряжение для них обеспечивает инвертор, размещенный в блоке питания монитора. Лампы обычно располагаются сверху и снизу, их излучение направлено в торец полупрозрачной панели, находящейся сзади за матрицей и выполняющей роль световода. От качества матирования и однородности материала этой панели зависит такая важная характеристика, как равномерность подсветки матрицы.

Современные технологии TFT LCD

Для ЖК-мониторов основным элементом, определяющим качество изображения, является матрица TFT LCD. На сегодняшний день на рынке представлены три конкурирующие между собой базовые технологии ЖК-панелей и некоторое количество их разновидностей. Это Twisted Nematics (TN, раньше добавляли еще и +Film, однако сейчас других просто нет), In-Plane Shutter (IPS, S-IPS) и Vertical Alignment (VA, MVA, PVA). Не затрагивая технических особенностей данных технологий, которые широко обсуждаются на соответствующих технических сайтах в Интернете, остановимся лишь на их практических и рыночных аспектах.

TN. Самый старый и дешевый в производстве тип матриц, для него же характерно минимальное время отклика, что и обусловило его широкое распространение. Большинство 17-дюймовых дисплеев и до 50% 19-дюймовых содержат именно матрицы TN. На этом, пожалуй, достоинства заканчиваются, и начинается длинный список недостатков.

Специфическая, «жесткая» цветопередача, весьма далекая от эталонной (а с появлением «сверхбыстрых» панелей она еще ухудшилась); клиппинг в светлых областях изображения; малые углы обзора, особенно вертикальный; невысокая контрастность. К тому же «битые» пикселы (dead pixels) на таких матрицах пропускают свет, поэтому на экране они будут видны в виде яркой синей, красной или зеленой точки.

Но все же, если вам нужен монитор с минимальным смазыванием движущегося изображения, пока именно TN остается наилучшим выбором. Однако не стоит забывать, что при этом он совершенно не подойдет для работы с графикой.

Узнать такие матрицы довольно легко по потемнению картинки при взгляде снизу и выцветанию, вплоть до инвертирования светлых областей при взгляде сверху.

IPS/S-IPS. Характеристики матриц, выполненных по данной технологии (разработанной компанией Hitachi), являют собой прямую противоположность таковым для TN. IPS имеет впечатляющий список достоинств. Это и отличная цветопередача, и широчайшие углы обзора, и хороший контраст (глубокий черный цвет). Но преуспеванию IPS на рынке мешают ее недостатки: сложность в производстве (как следствие, дороговизна) и большое время реакции матрицы.

IPS может быть идеальным выбором для задач, связанных с обработкой статического изображения. А вот комфортно играть в компьютерные игры, увы, не получится. Кроме того, на рынке до сих пор нет IPS-матриц с технологией overdrive (подробнее о ней ниже), поэтому мониторы с такими матрицами выбирают преимущественно профессионалы в области графики.

Узнать матрицы IPS также легко: если взглянуть под углом на включенный монитор с черной заливкой на экране, то черный цвет будет иметь фиолетовый оттенок.

MVA/PVA. Технология MVA (Multi-domain Vertical Alignment) разработана компанией Fujitsu в качестве компромиссной между IPS и TN. Достоинства таких матриц: отличные углы обзора, неплохая цветопередача, высокая контрастность; однако время отклика по-прежнему не может сравниться с соответствующим показателем у TN.

Samsung производит матрицы PVA (Pattern Vertical Alignment) и S-PVA, которые, грубо говоря, являются усовершенствованными вариантами MVA. Корейской компании удалось значительно улучшить контрастность, вплоть до рекордной 1000:1, а также с помощью технологии overdrive серьезно уменьшить время отклика – теперь на топовых моделях 19-дюймовых мониторов этого производителя вполне можно комфортно играть в динамичные компьютерные игры.

Если обобщить весь опыт тестирования ЖК-мониторов в нашей Тестовой лаборатории, то именно PVA-матрицы на сегодняшний день видятся нам как оптимальный компромисс между малым временем отклика TN и качественной цветопередачей IPS. Поэтому дисплеи, оборудованные такими матрицами, могут в наибольшей степени претендовать на звание универсальных.

Чем определяется качество

После рассмотрения достоинств и недостатков применяемых в ЖК-дисплеях технологий изготовления матриц у вас может возникнуть совершенно закономерный вопрос: если качество изображения на 80% зависит от матрицы, почему же цены на схожие мониторы разных брендов подчас отличаются в несколько раз?

Даже если оставить за рамками качество сборки и материал корпуса, а также конструкцию подставки и возможности настройки параметров изображения, останется такой животрепещущий вопрос, как политика производителя по отношению к «битым» пикселам. Последние представляют собой ячейки, управляющие тонкопленочные транзисторы которых вышли из строя. Обычно это вызвано производственным дефектом, так как сделать идеальную панель большой диагонали с тремя миллионами ячеек совсем не просто, в ходе же эксплуатации монитора новые дефекты появляются редко.

Стандарт ISO 13406-2 определяет четыре класса ЖК-панелей, для каждого из которых допускается наличие определенного количества неработающих ячеек на миллион пикселов. Для массового распространения на данный момент сертифицированы лишь матрицы первого («битые» субпикселы отсутствуют) и второго классов (количество вышедших из строя субпикселов не больше пяти). Однако ввиду непрекращающегося падения цен держать такую планку качества производителям все труднее: слишком много панелей уходит в брак, а работать в убыток в условиях демпинга долго не получится. Поэтому если тенденция к удешевлению ЖК-дисплеев сохранится и в будущем, то совсем не исключено появление на рынке и панелей третьего класса (от 6 до 50 вышедших из строя субпикселов).

Кто-то может спросить: а как же те производители, которые гарантируют, что «битых» пикселов в их мониторах нет? Они что, научились делать ЖК-панели практически без брака? Нет, здесь все гораздо проще. Гарантия на полное отсутствие вышедших из строя субпикселов обычно дается лишь на отдельные модели мониторов (вершины продуктовых линеек) и свидетельствует о применении панелей первого класса. Второй же класс просто устанавливают в более дешевые модели линейки. Кроме того, такую гарантию на свои дисплеи могут безбоязненно давать прежде всего те бренды, которые делают ЖК-панели и для себя, так как при этом они имеют возможность отобрать для собственных устройств самые качественные из них: Samsung, LG и Philips.

Таким образом, на пресловутый вопрос «навіщо платити більше?» применительно к ЖК-мониторам имеется совершенно четкий ответ. Как говорил М. Жванецкий, можно этого и не делать, если вас не интересует результат – в нашем случае качество приобретаемого устройства.

Не все спецификации одинаково полезны

Если взглянуть на страницу спецификаций ЖК-дисплея любого производителя, то список его технических характеристик обычно выглядит весьма внушительно. Для потенциальных покупателей зачастую именно спецификации являются единственным источником информации о продукте, и поэтому в народе довольно популярно сравнение характеристик устройств различных брендов. Тем не менее такой подход к ЖК-мониторам, к сожалению, совершенно неприменим – делать выводы о качестве, сравнивая спецификации, корректно лишь для продуктов одной компании (да и то не всегда).

Такая ситуация с, казалось бы, вполне объективными показателями, изначально призванными вносить ясность, требует дополнительного рассмотрения. Для начала отметим, что, хотя стандарт VESA на измерения параметров плоскопанельных дисплеев определяет их методику однозначно, далеко не все производители ее придерживаются. Более того, когда дело доходит до наиболее критичных с маркетинговой точки зрения пунктов спецификации, с методами и условиями их измерений зачастую начинается самый настоящий бардак.

Попробуем разобраться, какие же из характеристик ЖК-дисплея наиболее важны и стоят того, чтобы при выборе обратить на них внимание.

Размер диагонали и разрешение . Если первый параметр очевиден и особых комментариев не требует, то на втором стоит остановиться подробнее. ЭЛТ-дисплеи могут одинаково хорошо работать в широком диапазоне разрешений, так как размер ячейки их теневой маски или апертурной решетки намного меньше пиксела изображения. Однако картинка на ЖК-панели выглядит оптимально в том случае, если видеоадаптер работает в «родном» для ЖК-монитора разрешении (native resolution). Ячейки ЖК-панели по сравнению с ячейками теневой маски довольно велики, и на один пиксел изображения приходится лишь одна RGB-ячейка матрицы. Поэтому для 15-дюймовых дисплеев основным рабочим является разрешение 1024×768, для 17- и 19-дюмовых – 1280×1024. Все прочие режимы будут лишь компромиссами: при установке на видеоадаптере ПК меньшего разрешения изображение масштабируется до нужного размера электроникой дисплея и в результате «замыливается». Если же разрешение видеорежима превышает оптимальное, то большинство мониторов отказывается с ним работать либо опять-таки картинка ухудшается из-за пересчета.

Обратите внимание, что несмотря на два дюйма разницы в размере диагонали, 17- и 19-дюймовые мониторы (в большинстве своем) характеризуются одним и тем же «родным» разрешением. То есть количество информации, которое можно разместить на них, одинаково, выигрыш лишь в большем размере точки для 19-дюймового дисплея. На практике чаще всего оказывается, что значительно приятнее работать именно с последним – за счет увеличенного размера ячеек матрицы (и соответственно, уменьшенного расстояния между ними) изображение, формируемое 19-дюймовым устройством, кажется лучше.

Частота обновления экрана . В эпоху ЭЛТ-мониторов этот параметр был важнейшим для достижения комфортного, немерцающего изображения на дисплее. Но для того чтобы человеческий глаз воспринимал быстро сменяющиеся кадры как движущуюся картинку, достаточно и 30 кадров в секунду (60 при чересстрочном формировании). Необходимость же поднимать частоту «рефреша» до 85, 100 и даже 120 Гц была вызвана тем, что на ЭЛТ-дисплеях изображение формируется построчным сканированием, причем, пока электронный луч «засветит» строку в нижней части экрана, обладающий небольшим временем светимости люминофор в верхней его части уже успевает отдать значительный процент своей энергии, и картинка темнеет – до следующего прохода луча.

Так как в ЖК-дисплеях кадр формируется целиком, и каждая ячейка матрицы – это транзистор с запоминающим конденсатором (storage capacitor), который долго хранит заряд, то никакое мерцание (чередование светлых и темных кадров) не возникает, и необходимой и достаточной частотой обновления является значение в 60 Гц. Именно на него рассчитана электроника ЖК-матрицы, и потому, даже если на видеоадаптере установлена более высокая частота, DSP дисплея будет пропускать лишние кадры, что может привести к рывкам движущегося на экране изображения.

Яркость и контрастность . Максимальная яркость ЖК-панели зависит от мощности ее подсветки и коэффициента пропускания матрицы и фильтров. Контрастность же определяется отношением интенсивности белого цвета к светимости черного цвета. Производители частенько указывают в паспортных данных мониторов значения, которые заявлены для установленных в них панелей, что, строго говоря, не совсем верно, так как электроника и качество сборки дисплея могут оказать существенное влияние на эти величины.

Паспортное значение максимальной яркости в 250 кд/м2 считается вполне достаточным, причем для работы при искусственном освещении хватает реального уровня в 100–120 кд/м2, а бóльшая яркость может понадобиться лишь при ярком солнечном свете.

С контрастностью не все так просто: в идеале чем больше она заявлена (при равной яркости), тем чище черный цвет на мониторе. На практике же иногда бывает так, что при меньшей заявленной контрастности на одном мониторе черный цвет выглядит заметно чище и глубже, чем на другом, в паспорте которого указано более высокое значение: здесь вступают в силу тип, эффективность антибликового покрытия экрана и прочие факторы.

Количество отображаемых цветов . Этот, на первый взгляд, не слишком информативный пункт спецификации подчас может многое сказать об установленной в монитор ЖК-матрице. Дело здесь вот в чем: разрядность большинства «сверхбыстрых» TN-матриц, в изобилии появившихся на рынке за последние несколько лет, составляет менее 8 бит на канал цветности (24 бит RGB), обычно лишь 6 (18 бит RGB), чего без применения специальных средств совершенно недостаточно для формирования всего спектра режима True Color: 28∙28∙28 дает 16 777 216 цветов, а 26∙26∙26 – только 262 144. Для эмуляции недостающих оттенков в управляющую электронику закладываются алгоритмы дизеринга – либо традиционные пространственные (когда варьируются цвета соседних точек), либо временные, когда отображаемый пикселом цвет переключается через каждый кадр; а иногда и различные их сочетания. В итоге глаз удается обмануть, однако качество изображения на такой матрице все же нельзя сравнивать с таковым для полноценной 24-битовой матрицы.

Поэтому еще совсем недавно при установке в монитор матрицы с уменьшенной разрядностью производители в графе «количество цветов» указывали 16,2 млн оттенков, а для полноценной 24-битовой – 16,7 млн. На сегодняшний же день, к сожалению, некоторые компании даже для 18-битовых панелей пишут 16,7 млн оттенков, и потому определить с помощью спецификаций, какая в мониторе матрица, возможным не представляется.

Углы обзора . Данный параметр очень важен для комфортной работы с монитором. Однако он, увы, утратил свою информативность – с тех пор как в спецификациях даже быстрых ЖК-матриц производители начали указывать значения 140–160°. Нет, это не значит, что углы обзора стали лучше, скорее наоборот, немного изменилась методика их измерений.

Исторически граничным углом обзора, вносимым в спецификации, считался такой, при котором контраст падал до 10:1. Как видите, уже тогда при этом совершенно не учитывались возникающие искажения цветопередачи, которые для TN-матриц подчас выражаются в инвертировании цветов. Для «быстрых» же матриц реальные углы обзора еще ýже, чем для обычных. Поэтому в последнее время некоторые производители ни с того ни с сего начали считать граничными углы обзора матрицы при контрасте не 10:1, а всего 5:1, что дает им основания указывать даже для «быстрых» TN-матриц значения выше 140°.

На практике же разница между углами обзора для разных типов матриц, как говорится, небо и земля. Если для «быстрых» TN заметные искажения наблюдаются даже при небольшом отклонении взгляда от угла нормали (иногда при нормальном угле зрения по центру монитора они уже заметны в его углах), то на современные мониторы, оснащенные PVA- и IPS-матрицами, можно смотреть практически под любым углом. Поэтому углы обзора мониторов на матрицах типа TN и MVA/PVA/IPS несравнимы, хотя цифры спецификаций подчас довольно схожи.

Время отклика. Это один из наиболее спорных и неоднозначных параметров современных ЖК-дисплеев. Гонка миллисекунд, которая длится вот уже несколько лет, привела к тому, что многие пользователи, особенно любители компьютерных игр, выбирают для себя монитор, руководствуясь исключительно данной характеристикой. Однако, как мы неоднократно подчеркивали в тестированиях, на практике заявленное низкое время реакции матрицы еще не гарантирует отсутствия смазывания движущегося изображения – более того, нередки случаи, когда, скажем, монитор с паспортным временем реакции 16 мс на поверку оказывается быстрее 12-миллисекундной модели.

Дело, как обычно, в выбранной методике измерения. Еще недавно временем реакции было принято считать суммарное время переключения пиксела с черного цвета на белый (trise) и обратно (tfall), точнее достижения значений яркости 90% и 10% соответственно. Но эта цифра не давала представления о том, как будет вести себя монитор в реальных условиях, и вот почему. При переходе от минимального уровня к максимальному прикладываемое к электродам матрицы напряжение также максимальное; следовательно, воздействие на жидкие кристаллы довольно сильное, что обеспечивает их быструю переориентацию в нужном направлении. Гораздо сложнее осуществить столь же стремительный поворот на небольшой угол (речь идет все же о кристаллах, хоть и «жидких» – их вязкость высока), что соответствует переходам от одного промежуточного состояния к другому (между оттенками серого). Приложенное напряжение будет уже не столь высоким, и время отклика может превысить заявленное в несколько раз – все зависит от типа и конструкции матрицы. В итоге для одной 16-милисекундной модели на экране хорошо видно смазывание, а для другой оно практически не проявляется, и оценить его можно только на глаз либо путем измерения и последующего усреднения длительности всех переходов между различными состояниями ЖК-ячейки (число которых для 8-битовой RGB-матрицы составит 256).

Разгоняем… монитор!

А нельзя ли как-то подогнать неторопливые кристаллы, чтобы ускорить время их поворота при переходе между промежуточными состояниями? Оказывается, можно. Для этого нужно знать их исходное положение (запомнить предыдущий кадр) и точно рассчитать так называемый разгонный импульс напряжения для нового значения пиксела в следующем кадре. Он значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, и поэтому быстро повернет кристаллы в нужное положение. Данная технология получила название overdrive, и ее корректное воплощение способно снизить время отклика ЖК-ячейки до минимального почти по всему диапазону ее состояний.

Проблема здесь заключается в соблюдении требуемой точности: даже в обычных панелях значения напряжений для формирования 256 состояний находятся в столь узком диапазоне, что управление ими представляет собой настоящее балансирование на острие ножа. Для нормальной же работы форсированной панели точность нужно повысить на порядок, что пока удается отнюдь не всем.

На данном этапе корректная настройка схемы overdrive для панели все еще технически сложная задача, и под силу далеко не всем производителям. В результате при смене состояния ячейки могут стать заметны артефакты – скажем, если оптимальное значение разгонного импульса будет превышено и кристаллы повернутся на больший, чем нужно, угол, через ячейку на какое-то время пройдет больше света. Визуально для движущегося на сером фоне черного объекта это выразится в светлой кайме вместо привычных смазанных фронтов, хотя, повторим, при корректно реализованной технологии такие артефакты появляться не должны.

Чтобы подчеркнуть преимущества мониторов, оборудованных панелями с технологией overdrive, производители выбрали другую методику измерения времени отклика. Если раньше это была сумма временных затрат на переключение ячейки из черного в белый и обратно, то теперь часто указывают усредненное время переключения из одного оттенка серого в другой (Gray-to-Gray, GTG). Однако легко заметить, что в последнем варианте измерения одним переключением меньше, поэтому в результате даже без применения overdrive получается более красивая цифра. Ну а этим быстро воспользовались маркетинговые отделы тех компаний, которые еще даже не воплотили поддержку overdrive в своих матрицах…

Одним словом, заявленное в спецификации время отклика, к сожалению, имеет мало общего со степенью смазывания движущегося изображения в реальных задачах. Для объективной же оценки данного параметра необходимо проводить большое количество измерений, да еще учитывая при этом, что пользовательские настройки монитора, о которых пойдет речь ниже, могут вносить в них существенные коррективы.

Настройка ЖК-монитора

Из всех параметров ЖК-дисплея, которые пользователь может подстраивать, как важнейшие мы выделим яркость, контраст, гамму и цветовую температуру. Следующее утверждение на первый взгляд может показаться нелепым, однако это горькая правда: при установке для них значений, отличных от заводских (точнее, оптимальных для данной ЖК-матрицы), велика вероятность заметного ухудшения цветопередачи. Единственным исключением здесь будет лишь регулировка яркости ламп подсветки, хотя она встречается не у всех моделей.

Если вспомнить устройство и принцип работы ЖК-монитора, то понять, почему так происходит, будет несложно. Без изменения яркости и спектра излучения ламп подсветки (первое возможно, а вот второе – нет) единственный способ реализации всех подобных настроек – подмешивание к видеосигналу, подаваемому на матрицу, некоторой постоянной составляющей. А это приведет к сужению рабочего диапазона значений ячеек матрицы и, как следствие, к уменьшению количества отображаемых цветов (которое даже для лучших панелей и так относительно невелико).

Убедиться же в этом на практике еще проще: достаточно загрузить популярную программу TFTtest.exe и вывести на экран монохромную градиентную заливку (либо нарисовать ее в любом растровом графическом редакторе), а потом поменять значения упомянутых настроек и понаблюдать за появляющимися искажениями, которые выражаются в виде ступенек и/или цветных разводов на градиенте.

  • Выполнить полный сброс установок.
  • Вывести на экран плавную монохромную градиентную заливку.
  • Отрегулировать яркость, контраст, гамму и цветовую температуру таким образом, чтобы на градиенте не наблюдались полосы, ступеньки и цветовые аномалии.
  • В дальнейшем из всех настроек монитора корректировать лишь яркость подсветки, если есть такая возможность, так как она не влияет на качество цветопередачи.
  • Все остальные параметры настраивать с помощью драйверов видеоадаптера либо аппаратного калибратора.

ЖК-мониторы: светлое будущее?

Рыночные перспективы этих устройств не вызывают сомнений, так как наблюдаемый высокий спрос на них однозначно свидетельствует: пользователи сделали свой выбор и жаждут поскорее сменить на своих столах громоздкие ЭЛТ-устройства на компактные и изящные ЖК-мониторы, забывая при этом о недостатках ЖК-технологии. К сожалению, ценовые и маркетинговые войны, развязываемые производителями, приводят к ухудшению ряда важнейших для качества изображения параметров на фоне улучшения лишь двух – времени реакции и стоимости. Особенно данная тенденция заметна для mainstream-дисплеев – 17- и 19-дюймовых устройств с панелями на базе технологии TN.

Таким образом, прогнозы скорой смерти матриц типа TN оказались, мягко говоря, несколько преувеличенными: раз большинство пользователей вполне устраивает такое качество изображения, то и необходимости его улучшать на сегодняшний день попросту нет. Для требовательных же покупателей, готовых платить за качество, остаются дисплеи на матрицах PVA и IPS больших диагоналей (19 дюймов и более). И до тех пор пока их время отклика и цена не сравняются с таковыми для TN-матриц (что маловероятно), господство последних на рынке не подлежит сомнению.

Жидко кристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) - плоский монитор на основе жидких кристаллов. ЖК мониторы были разработаны 1963г.

LCD TFT (англ. TFT - thin film transistor - тонкопленочный транзистор) - одно из названий жидкокристаллического дисплея, в котором используется активная матрица , управляемая тонкопленочными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и четкости изображения дисплея.

Устройство ЖК-монитора

Изображение формируется с помощью отдельных элементов, как правило, через систему развертки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью RGB -триад. В большинстве настольных мониторов на основе TN -(и некоторых *VA ) матриц, и во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN -матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растет число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отраженным от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, "родное", физическое разрешение, остальные достигаются интерполяцией.

Размер точки : расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана(формат) : Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

Видимая диагональ : размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность : отношение яркостей самой светлой и самой темной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности(так называемая динамическая) не относится к статическому изображению.

Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.

Угол обзора : угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями считается по-разному, и часто сравнению не подлежит.

Тип матрицы : технология, по которой изготовлен ЖК-дисплей

Входы : (напр, DVI , D-SUB, HDMI и пр.).

Технологии


Основные технологии при изготовлении ЖК дисплеев: TN+ film , IPS и MVA . Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках. Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display) - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V , высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+ film (Twisted Nematic + film )

Макрофотография TN+ film матрицы монитора NEC LCD1770NX . На белом фоне - стандартный курсор Windows.


Часть " film " в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку " film " часто опускают, называя такие матрицы просто TN . К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причем время отклика у данного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

IPS (In-Plane Switching)

Технология In- Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film . Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора "битый" пиксель для панели IPS будет не белым, как для матрицы TN , а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.AS-IPS - технология Advanced Super IPS (Расширенная Супер- IPS ), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS , приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например NEC LCD20WGX2 ) созданных по технологии S-IPS , разработанной консорциумом LG.Philips .

A-TW-IPS - Advanced True White IPS (Расширенная IPS с Настоящим Белым), разработано LG.Philips для корпорации NEC . Представляет собой S-IPS панель с цветовым фильтром TW (True White - Настоящий белый) для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.

AFFS - Advanced Fringe Field Switching (неофициальное название S-IPS Pro ). Технология является дальнейшим улучшением IPS , разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться еще больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays .

Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD - цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Конструкция ЖК-дисплея

Рисунок 1. Конструкция ЖК-дисплея.

Плоскость поляризации

Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.

Рисунок 2. Плоскость поляризации.

Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Плоскость поляризации

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).

Рисунок 3. Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).

Конструкция ЖК-матрицы

Рисунок 4. Поляризация светового луча.

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (см. рис. 4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут принимать любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Технологии STN, DSTN, TFT, S-TFT

STN - сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки -- их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Рисунок 5. Конструкция ЖК-матрицы.

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120–140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° (см рис. 6), и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Угол обзора ЖК-мониторов

Рисунок 6. Угол обзора ЖК-мониторов.

Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые Thin Film Transistor (или просто TFT).
Thin Film Transistor (TFT), то есть тонкопленочный транзистор, это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1–0,01 мкм.
В первых TFT-дисплеях, появившихся в 1972 году, использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).
Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в режиме SVGA и только с тремя цветами имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD-панели. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов (см. рис. 7). Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15,1-дюймового дисплея TFT (1024x768) приблизительно равен 0,0188 дюйма (или 0,3 мм), а для 18,1-дюймового дисплея TFT - около 0,011 дюйма (или 0,28 мм).

Рисунок 7. Конструкция TFT.

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Рисунок 8. Конструкция S-TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана (см. рис. 8). Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на квадратный мм, или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии «color filter on TFT» светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции «Society for information Display» было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес - всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды - двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

100% гарантия

Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

Диагностика и ремонт мониторов

Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

Особенности ухода

Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

Чистящее средство следует наносить на салфетку, а не на загрязнение.

Протирая дисплей, нельзя применять силу.

Нельзя включать монитор до полного его высыхания.

Недостатки

ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

  • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
  • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
  • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
  • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
  • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
  • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
  • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
  • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
  • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.

Большинство современных LCD мониторов имеют достаточно простое построение, если рассматривать его на уровне чипов, т.е. в мониторе мы видим сейчас две или три крупных микросхемы. Функциональное назначение этих микросхем в большинстве случаев является типовым, несмотря на то, что выпускаются они разными производителями и имеют различную маркировку. А так как микросхемы выполняют одинаковые функции, то их входные/выходные сигналы будут практически идентичными, т.е. основное отличие микросхем заключается в их характеристиках и цоколевке корпуса. Именно поэтому к большинству современных LCD мониторов, невзирая на множество их торговых марок и множество различных моделей, можно применять одинаковые подходы при диагностике неисправностей и ремонте. Кроме идентичной функциональной схемы, почти все LCD мониторы имеют одну и ту же схему компоновки, т.е. практически все производители пришли к одинаковой схеме распределения электронных компонентов монитора по различным печатным платам.

Итак, если посмотреть на современный LCD монитор, то внутри него мы найдем, как правило, саму LCD-панель и три печатные платы (рис.1):

Рис.1

- основную плату управления и обработки сигналов (Main PCB );

- плату блока питания и инвертора задней подсветки (Power PCB );

- плату лицевой панели управления.

Межблочные связи при такой компоновке монитора демонстрирует рисунок 2.

Рис.2

Многие современные мониторы могут использоваться как USB-хаб, к которому могут подключаться различные USB устройства. Поэтому в составе монитора может появиться еще одна печатная плата, соответствующая USB-хабу, но наличие этой платы, естественно, является опциональным.

На основной плате управления располагаются микропроцессор монитора и скалер. Этой платой осуществляется обработка входных сигналов монитора и преобразование их в сигналы управления LCD-панелью. Именной этой платой во многом определяется качество изображения, воспроизводимого на экране монитора. Основное отличие моделей мониторов друг от друга заключается в конфигурации этой печатной платы, в типе установленных на ней микросхем и в их "прошивке".

Плата лицевой панели управления представляет собой узкую печатную плату, на которой расположены только лишь кнопки и светодиод.

Плата источников питания (в документации LG ее обозначают, как LIPS ), представляет собой комбинированный источник питания, который состоит из двух импульсных преобразователей: основного блока питания и инвертора задней подсветки. Этой платой формируются все основные напряжения, необходимые для работы и основной платы, и LCD-панели, а также формируется высоковольтное напряжение для ламп задней подсветки. Именно эта печатная плата дает наибольшее количество различных проблем и отказов LCD-мониторов.

Но существует и второй вариант компоновки, при котором кроме LCD-матрицы в мониторе имеется четыре печатные платы:

- основная плата управления и обработки сигналов (Main PCB );

- плата блока питания (Power PCB );

- плата инвертора задней подсветки (Back Light Inverter PCB );

- плата лицевой панели управления.

В данном варианте компоновки блок питания и инвертор задней подсветки представляют собой отдельные печатные платы (рис.3).

Рис.3

Межблочные связи, характерные для такой компоновки монитора, представлены на рис.4. В качестве примера здесь можно представить мониторы LG FLATRON L1810B и L1811B.

Рис.4

Прежде чем говорить о различных вариантах схемотехники LCD дисплеев, дадим краткие характеристики основным компонентам, из которых они состоят.

Микропроцессор

Микропроцессором, который в различных источниках может обозначаться как CPU, MCU и MICOM , осуществляется общее управление монитором. Основными его функциями являются:

- формирование сигналов для включения и выключения задней подсветки;

- управление яркостью ламп задней подсветки;

- настройка режима работы скалера;

- формирование сигналов управляющих работой скалера;

- обработка и контроль входных синхросигналов HSYNC и VSYNC;

- определение режима работы монитора;

- определение типа входного интерфейса (D-SUB или DVI);

- обработка сигналов от лицевой панели управления.

Управляющая программа микропроцессора, как правило, находится в его внутреннем ПЗУ, т.е. эта программ "прошита" в микропроцессоре. Однако часть управляющего кода, и особенно различные данные и переменные хранятся во внешней энергонезависимой памяти, которая представляет собой электрически перепрограммируемое ПЗУ – EEPROM. Микропроцессор имеет прямой доступ к микросхемам EEPROM.

Микропроцессор, как правило, является 8-разрядным и работает на тактовых частотах порядка 12 – 24 МГц. Микропроцессор, на самом деле, является однокристальным микроконтроллером, в составе которого, кроме CPU имеются еще:

- многоцелевые цифровые порты ввода/вывода с программируемыми функциями;

- аналоговые входные порты и цифро-аналоговый преобразователь;

- тактовый генератор;

- ПЗУ;

- ОЗУ и другие элементы.

EEPROM

В энергонезависимой памяти, в первую очередь, хранятся данные о настройках монитора и заданные пользователем установки. Эти данные извлекаются из EEPROM в момент включения монитора и инициализации микропроцессора. При каждой настройке монитора и установке нового пользовательского значения какого-либо параметра изображения, эти новые значения переписываются в EEPROM, что позволяет их сохранить. В современных мониторах в качестве EEPROM , в основном, применяются микросхемы с последовательным доступом по шине I2C (сигналы SDA и SCL ). Это микросхемы типа 24C02, 24C04, 24C08 и т.д.

DDC- EEPROM

Все современные мониторы поддерживают технологию Plug&Play, которая предполагает передачу от монитора в сторону ПК паспортной и конфигурационной информации о мониторе. Для передачи этих данных используется последовательный интерфейс DDC, которому на интерфейсе соответствую сигналы DDC-DATA (DDC-SDA) и DDC-CLK (DDC-SCL) . Сама паспортная информация хранится в еще одном EEPROM, который, практически, напрямую соединен с интерфейсным разъемом. В качестве EEPROM используются те же микросхемы 24C02, 24C04, 24C08 , а также может использоваться и более специализированная – 24C21 .

Формирователь RESET

Схема формирования сигнала RESET обеспечивает контроль питающего напряжения микропроцессора. Если это напряжение становится ниже допустимого значения, работа микропроцессора блокируется установкой сигнала REST в низкий уровень. В качестве формирователя сигнала чаще всего используется микросхема Low Drop стабилизатора, типа KIA7042 или KIA7045.

Скалер

Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:

- микропроцессор;

- ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;

- аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;

- блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;

- схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);

- формирователь OSD;

- трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.

Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.

Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.

Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.

Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.

Рис.5

Фрейм-буфер

Фрейм-буфер – это оперативная память достаточно большой емкости, которая используется для сохранения образа изображения, выводимого на экран. Эта память требуется при преобразовании (масштабировании) изображения, т.е. когда входное разрешение не совпадает с разрешением LCD-панели. В качестве фрейм-буфера используется память динамического типа, чаще всего SDRAM. Емкость этой памяти определяет разработчиком, исходя из формата LCD-панели и ее цветовых характеристик.

DC-DC преобразователь

Этим модулем обеспечивается формирование всех постоянных напряжений, необходимых для работы монитора. Этими напряжениями являются: +5V, +3.3V, +2.5V или +1.8V. Преобразователи представляю собой либо линейные, либо импульсные преобразователи постоянного напряжения.

Буфер синхросигналов

Буфер синхросигналов, представляют собой усилители, выполненные либо на транзисторах, либо на микросхемах мелкой логики. Буфером обеспечивается усиление и буферизация входных сигналов синхронизации HSYNC и VSYNC . Часто буферы управляются микропроцессором, что позволяет выбрать источник сигнала, а также выбрать тип синхронизации (раздельная, композитная или SOG ).

Инвертор

Инвертор формирует высоковольтное и высокочастотное напряжение для ламп задней подсветки. Представляет собой импульсный высокочастотный преобразователь, который из напряжения +12V создает импульсное напряжение амплитудой около 800В .

Блок питания

Блоком питания из переменного напряжения сети формируются постоянные напряжения +12В и +5В, используемые для питания всех каскадов монитора. Блок питания является импульсным и может представлять собой как внешний сетевой адаптер, так и внутренний модуль монитора, хотя в мониторах, представленных в данном обзоре, блок питания является внутренним.

Подавляющее большинство LCD мониторов можно отнести к одному из трех базовых вариантов схемотехники, которые попытаемся охарактеризовать.

1) Первый вариант характеризуется наличием на MAIN BOARD двух основных микросхем: микросхемы микропроцессора и микросхемы скалера. Микропроцессором осуществляется общее управление компонентами монитора, а скалер осуществляет преобразование цветовых сигналов, т.е. осуществляет подстройку изображения под разрешение LCD-панели. При этом скалер обрабатывает данные "на лету", т.е. без предварительного сохранения образа изображения в промежуточной памяти. Поэтому микросхемы памяти в таком варианте схемотехники не используются. Блок-схема такого LCD-монитора демонстрируется на рис.6.

Рис.6

2) Второй вариант (рис.7)отличается от первого наличием в мониторе микросхем памяти, которые часто называют буфером фрейма (Frame Buffer). Наличие микросхем памяти характерно для мониторов более высокого класса, которые способны работать с изображениями различных входных форматов, в том числе и телевизионных. К этому классу мониторов в большей степени относятся 18-дюймовые мониторы, например FLATRON L1811B.

Рис.7

3) Третий вариант характеризуется наличием на основной плате MAIN BOARD всего одной "активной" микросхемы. Под термином" активная микросхема" мы подразумеваем микросхему, имеющую собственную систему команд, программируемую под выполнение различных функций и способную выполнять какую-либо обработку сигналов. В некоторых мониторах (например, в FLATRON L1730B и L1710S), мы видим всего одну такую микросхему, которая совмещает в себе и функции микропроцессора и функции скалера. Так как подобные микросхемы могут использоваться в различных моделях мониторов, и так как в составе микросхемы имеется микропроцессор, для работы которого требуется наличие управляющих кодов, то на плате MAIN BOARD мы найдем еще и микросхему постоянного запоминающего устройства – ПЗУ (ROM). Эта микросхема, которая чаще всего является 8-разрядным ПЗУ с параллельным доступом, содержит управляющую программу для работы комбинированной микросхемы скалера-микропроцессора. Часто микросхема ПЗУ является электрически перепрограммируемой, и поэтому ее часто обозначают, как FLASH. Практически во всех мониторах LG в качестве ПЗУ используются микросхема семейства AT49HF. Блок-схема мониторов с такой схемотехникой представлена на рис.8.

Рис.8

Кроме этих трех вариантов построения монитора можно ввести и еще один вариант. Он отличается тем, что в мониторе используется такой скалер, который не имеет встроенного LVDS-трансмиттера. В этом случае трансмиттеру соответствует отдельная микросхема, которая устанавливается на основной плате между скалером и LCD-панелью. LVDS-трансмиттер осуществляет преобразование параллельного (24 или 48 разрядного) цифрового потока данных, сформированного скалером, в последовательные данные шины LVDS. LVDS-трансмиттер представляет собой микросхему общего применения, которая может использоваться в любых мониторах. Такая схемотехника, с внешним LVDS-трансмиттером, также характерна, в большей степени, для мониторов более высокого класса, т.к. в них применяются специализированные скалеры с меньшим количеством дополнительных функций. Пример блок-схемы монитора с подобной схемотехникой представлен на рис.9. В качестве примере монитора с таким построением, можно назвать модель LG FLATRON L1811B .

Рис.9

Здесь были рассмотрены лишь базовые варианты современной схемотехники, хотя во всем многообразии моделей и торговых марок LCD-мониторов можно встретить самые различные комбинации представленных блок-схем. В сводной таблице 1 отражены типы применяемых микросхем и особенности схемотехники наиболее массовых моделей мониторов LG.

Таблица 1. Особенности схемотехники TFT-мониторов компании LG

Модель монитора

Вариант компоновки

Вариант схемотехники

Типы основных микросхем

Тип используемой

LCD панели

CPU

Скалер

LVDS

L1510S

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A3M1

L1510P

см. рис.1

см. рис.6

MTV312

MST9051

LM150X06-A3M1

L1511S

см. рис.1

см. рис. 9

MTV312

GMZAN2

THC63LVDM83R

1) LM150X06-A3M1

2) LM150X07-B4

L1520B

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A4C3

L1710S

см. рис.1

см. рис. 8

GM2121

1) HT17E12-100

2) M170EN05

L1710B

см. рис.1

см. рис.6

MTV312

MST9151

1) LM170E01-A4

2) HT17E12-100

3) M170EN05V1

L1715 /16 S

см. рис.1

см. рис.6

MTV312

MST9111

LM170E01-A4

L1720B

см. рис.1

см. рис.6

MTV312

MST9111

1) LM170E01-A4

2) LM170E01-A5K6

3) LM170E01-A4K4

4) LM170E01-A5

L1730B

см. рис.1

см. рис. 8

GM5221

1) LM170E01-A5K6

2) LM170E01-A5N5

3) LM170E01-A5KM

L1810B

см. рис. 3

см. рис.6

MTV312

MST9151

1) LM181E06-A4M1

2) LM181E06-A4C3

L1811B

см. рис. 3

см. рис. 9

68HC08

GM5020

THC63LVD823

1) LM181E05-C4M1

2) LM181E05-C3M1

L1910PL

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

L1910PM

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

Аналитический обзор данных, представленных в таблице 1, позволяет сделать несколько интересных выводов.

Во-первых , практически все, представленные в таблице 1 мониторы, имеют одинаковую схему компоновки, которая, кстати, характерна практически для всех современных мониторов, независимо от фирмы-производителя.

Во-вторых , LG в своих мониторах в качестве управляющего процессора использует, преимущественно, микроконтроллер MTV312 , разработанный фирмой MYSON TECHNOLOGY . Этот микроконтроллер в своей основе имеет известнейший микропроцессор 8051. Кроме того, в состав микроконтроллера входят ОЗУ, Flash-ПЗУ, АЦП, процессор синхронизации, цифровые порты и целый ряд других элементов.

В-третьих, необходимо отметить, что в некоторых моделях мониторов могут использоваться различные типы LCD-панелей. Так, например, под крышкой мониторов, продаваемых под торговой маркой FLATRON 1710B , можно встретить LCD-панели трех разных типов: LM170E01-A4, HT17E12-100, M170EN05V1 , и это является весьма распространенной практикой практически всех производителей мониторов. Но интересным является тот факт, что иногда фирма LG в своих мониторах использует панели других производителей, являясь при этом крупнейшим мировым их производителем. Принадлежность LCD-панели можно определить по ее маркировке, первые буквы которой и определяют производителя:

LM – панели производства LG-PHILIPS

HT – панели производства HITACHI

M – панели производства AUO

FLC – панели производства FUJITSU