Как резистор ограничивает ток. Использование резисторов в электронике


Многие пользователи при подключении диодной ленты или отдельного светодиода к источнику питания обнаруживают, что элемент отказывается гореть как положено или еще хуже – просто перегорает.

Дело все в том, что узел подключается к питанию без надлежащей защиты и предварительных расчетов.

Задача эта, как ни странно, решается очень легко. Существует множество онлайн-инструментов для автоматического произведения расчетов, но не всем таким результатам можно доверять. И лучше всего сначала разобраться в принципах, а затем посчитать для надежности все вручную, тем более, что операция эта достаточно простая.

Что нужно знать

Если вы вдруг не знаете трех законов (правил) Кирхгофа для электрических контуров, то успокойтесь, их знания вам и не понадобится. Единственная нужная формула описывается законом Ома для участка цепи.

Она выглядит так.

Читается так: сила тока участка цепи прямопропорциональна напряжению и обратнопропорциональна сопротивлению на нем же. Или так: сила тока равна напряжению, разделенному на сопротивление (самый упрощенный вариант).

Формула легко преобразуется в другие при необходимости.

В расчетах мы будем использовать последнюю.

В оригинале формула немного сложнее, так как учитывает внутренне сопротивление и ЭДС самого источника тока.

Но ими мы смело можем пренебречь в данных условиях задачи.

Таким образом, нам понадобятся следующие параметры:

1. Выходные характеристики тока и напряжения в месте подключения. Если это участок цепи, то значения лучше всего измерить амперметром и вольтметром. Если выполняется прямое подключение к источнику тока (это может быть выпрямитель, батарея питания или аккумулятор), то достаточно будет знать их номинальные значения, обозначенные в маркировке или сопроводительной документации.

2. Максимальные (предельно допустимые) и номинальные значения напряжения питания и силы тока для подключаемого светодиода. Узнать их можно чаще всего по маркировке радиодетали. Если это светодиодная лента, то в сопроводительной документации.

Расчет при последовательном подключении

На самом деле, последовательное включение светодиодов вкупе с ограничивающим сопротивлением – наиболее часто применяемая схема. Так, например, светодиодная лента представляет собой не что иное, как множество светодиодов, соединенных между собой последовательно.

Рис. 1. Светодиодная лента

Для наглядности принципиальная схема.

Рис. 2. Принципиальная схема

В этом случае резистор будет выступать как делитель напряжения и ограничитель тока.

Формула будет выглядеть следующим образом.

R огр = (U пит - U сд) / I сд

  • R огр – это номинал ограничительного резистора;
  • U пит - напряжение на источнике питания (или на участке цепи, куда подключается блок "диод-резистор");
  • U сд - номинальное рабочее напряжение светодиода (см. в техдокументации);
  • I сд - номинальное (рабочее) значение силы тока на светодиоде (см. в техдокументации к светодиоду).

Если необходимо подключить сразу несколько диодов, то формула будет выглядеть следующим образом.

R огр = (U пит - N·U сд) / I сд

Где N – это количество светодиодов, подключенных последовательно.

Для светодиодных лент необходимо оперировать параметрами не одного элемента (диода), а сразу всего участка (исходя из нормативов для 1 погонного метра, умноженных на количество реально используемых метров).

При таком расположении деталей допускается соединение только диодов, одинаковых по параметрам (они сами выступают в качестве делителей напряжения и потому кому-то просто не хватит питания).

Пример расчета

Пусть U пит = 24 В, U сд = 1,8 В (в большинстве светодиодов это диапазон 1,5 - 2В), I сд = 10 мА (или 0,01 А, что также соответствует нормальным значениям широко используемых моделей диодов). Тогда подставив в формулу получаем:

R огр = (24 - 1,8) / 0,01 = 22,2 / 0,01 = 2220 (Ом)

Или 2,22 кОм (килоом).

Если диодов будет 5, то результат будет следующим:

R огр = (24 - 1,8 · 5) / 0,01 = 15 / 0,01 = 1500 (Ом)

Резисторы выпускаются только фиксированных значений. Получить требуемое можно соединив несколько различных сопротивлений последовательно (тогда их номинал будет складываться) или параллельно (формула расчёта ниже).

Перед монтажом лучше всего измерить показатель омметром.

Включение в схему может выполняться так, как указано ниже.

Рис. 3. Параллельное подключение светодиодов

В этом случае напряжение на каждом участке "резистор-светодиод" одинаково (при параллельном подключении изменяется только сила тока), а значит, расчёт будет вестись как и в примерах выше.

Расчет рассеиваемой мощности на резисторе

Ввиду того, что чем большее сопротивление оказывает элемент проходящему через него току, тем большую работу совершает последний. А работа всегда сопровождается выделением энергии, значит и резистор, как блокирующий элемент, будет неизбежно греться.

Чтобы сопротивление не вышло из строя раньше, чем это нужно, следует правильно рассчитать получаемую энергию и обеспечить равномерное ее рассеивание.

Так как резистор включен в цепь последовательно, то на участке "диод-резистор" сила тока везде одинаковая и не превышает номинальный показатель, который мы использовали в расчетах, то есть I сд (собственным сопротивлением диода в данном случае можно пренебречь, так как оно ничтожно мало, получается, что сопротивление участка цепи очень близко к номиналу ограничивающего резистора).

P (Вт) = I 2 (А) · R (Ом)

В качестве примера.

Для сопротивления 2220 Ом при силе тока на участке цепи 0,01 А

Резистор - один из наиболее распространённых компонентов в электронике. Его назначение - простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления - Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I , напряжение U , сопротивление R , если известны две остальные:

Для обозначения напряжения наряду с символом U используется V .

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1 . Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал - 240 или 220 Ом.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

    Токоограничивающий резистор (current-limiting resistor)

    Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)

    Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе - резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому - шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении - резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

Те, кому лень изучать данный матерниал, могут ознакомиться с более компактной версией этой статьи, где просто изложены правила подключения светодиодов без их объяснений. Также там есть глава часто задаваемых вопросов по подключению светодиодов. Остальным предлагаю ознакомится с этой статьёй, где подробно расписана сущность каждого правила, а также очень доступно объяснены основные понятия электротехники.

Правило 1. Светодиод нельзя подключать к питающему напряжению напрямую. Это делается только через ограничивающий ток резистор или специальную микросхему, автоматически ограничивающую ток (драйвер светодиода), например CL1, CL2 и т.п.

Правило 2. Светодиоды не различают по напряжению питания! Нет такой характеристики у светодиода, и ближайшая к ней по смыслу характеристика — прямое падение напряжения.

Введение

Всем нам с детства знакомы эти красивые яркие лампочки. Сегодня они присутствуют практически в любой аппаратуре. Кто постарше, помнят, как покупали их по 40–50 копеек за штуку и вставляли в магнитофоны «Электроника 302».

Сегодня их тоже используют самоделкины, но в основном для создания красивой подсветки автомобилей, компьютеров или других устройств (т.н. моддинг). Но правильно ли их подключают? Почему они то работают годами, а то сгорают в первые же дни, хотя подключены к одинаковому напряжению? Ответы на эти вопросы вы найдёте в этой статье.

Статья рассчитана на дилетантов в электронике, простым языком объясняя основные её понятия, необходимые для осмысленного подключения светодиодов к различным источникам питания.

Терминология русским языком

Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:

Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце.

Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
Измеряется в вольтах (В).

Ток — «количество электричества», проходящее по проводу в единицу времени.
Аналогичен количеству проходящей воды в трубе.
Измеряется в Амперах (А).

Сопротивление — сила, препятствующая прохождению электричества.
Аналогично сужению трубы, препятствующему свободному протоку воды.
Измеряется в омах (Ом).

Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
Аналогична толщине стенок места сужения трубы.

Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
Это батарейки, аккумуляторы, ток после выпрямителей.
Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.

Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.

Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например 50 раз в секунду.
Это электрическая сеть освещения, розетки. В них один провод (ноль ) является общим, относительно которого а другом проводе (фазе ) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
Аналогичен движению воды, которую насос через трубу (фазу ), опущенную сверху, то выдавливает в бак (ноль ), то всасывает из него.

Частота переменного тока — число полных циклов (периодов ) изменения направления тока (туда-обратно ) за секунду.
Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.

Важнейшие характеристики светодиодов

1. Полярность.

Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод ). В этот момент он и зажигается. Поэтому при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке ), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.

Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду но с обратной полярностью нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода.

Минус (катод ) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!

2. Напряжение питания и падение напряжения.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор ) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт ).

Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток .

3. Ток.

Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА ), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включенного резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса ) безразлично.

Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

Расчет ограничивающего ток резистора

Сопротивление резистора:

R = (U пит. − U пад.) / (I * 0,75)

  • U пит. — напряжение источника питания в вольтах.
  • U пад. — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
  • I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
  • 0,75 — коэффициент надёжности для светодиода.

Минимальная мощность резистора:

P = (U пит. − U пад.) 2 / R

  • P — мощность резистора в ваттах.
  • U пит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
  • U пад. — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
  • R — сопротивление резистора в омах.

Пример 1:

Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В ) от автомобильного аккумулятора 12 В.

R = (12 − 2) / (0,01 * 0,75) = 1333

То есть последовательно со светодиодом нужно ставить резистор 1,333 кОм. Ближайшим по номиналу будет резистор 1,3 кОм (1300 Ом ).

Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

Теперь посчитаем мощность:

P = (U пит. − U пад.) 2 / R = (12 −1,6) 2 / 1300 = 0,0832 Вт).

Мощность резистора должна быть не менее этой величины (0,0832 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим большим по мощности будет резистор 0,125 Вт.

Результат: Для подключения светодиода с указанными характеристиками к автомобильному аккумулятору нам потребуется резистор 1,3 кОм мощностью 0,125 Вт.

Пример 2:

Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В ) от сети переменного тока 220 В. Поскольку физика светодиода несколько отличается от физики простого теплоизлучателя, то для расчёта номинала резистора мы берём не среднеквадратичные 220 вольт, а настоящие присутствующие в розетке амплитудные 311 вольт.

R = (311 − 2) / (0,01 * 0,75) = 41200

То есть, последовательно со светодиодом нужно ставить резистор 41,2 кОм. Такой номинал существует в номинальном ряду Е96, но можно взять и более распространённый резистор из номинального ряда Е24 — 43 кОм и даже 39 кОм из номинального ряда Е12. Последний вариант даже более предпочтителен, поскольку напряжение питания достигает 311 вольт лишь в кратком пике, и поэтому имеет смысл округлить номинал резистора вниз.

Теперь посчитаем минимальную мощность такого резистора.

Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Поскольку мы расчитываем мощность резистора, а резистор является простым теплоизлучателем, то в расчётах используем среднеквадратичное напряжение 220 вольт. Итак,

I = U / (R рез. + R светодиода), где

R светодиода = U пад.номин. / I номин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

I = 220 / (39000 + 200) ≈ 0,006 А

Отсюда фактическое падение напряжения на светодиоде будет:

U пад.светодиода = R светодиода * I = 200 * 0,006 = 1,2 В

Теперь посчитаем мощность:

P = (U пит. − U пад.) 2 / R = (220 −1,2) 2 / 39000 ≈ 1,23 Вт).

Мощность резистора должна быть не менее этой величины (1,23 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим по мощности будет резистор 2 Вт.

Результат: Для включения светодиода с указанными характеристиками в сеть переменного тока 220 В нам потребуется резистор 39 кОм мощностью 2 Вт. Кроме того, следует оградить светодиод от вредного воздействия обратного напряжения, о чём подробно будет рассказано в следующей главе.

Замечание: Поскольку светодиод питается только одним полупериодом, а второй полупериод по идее пропускать не должен, то мощность резистора можно было бы уменьшить в 2 раза. Но во - первых, при напряжении 220 вольт у светодиода на каждой волне обратного полупериода происходит электрический пробой, а значит ток будет проходить и в обратном направлении, а во вторых, мы в конце концов будем специально пропускать обратный полупериод (другим обратно включенным параллельным диодом), чтобы не насиловать светодиод электрическими пробоями. Поэтому нагрузку на резистор всё равно надо расчитывать исходя из двухполупериодных 220 вольт, что мы и сделали.

Ограничение обратного напряжения при подключении светодиода к переменному току

При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.

Для того, чтобы создать на светодиоде приемлимое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод (маркировка начинается на 2Д… или КД…), который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА ).

Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В ), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.

Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам (например, диоду КД522Б, который используется, кстати, в сетевых фильтрах «Пилот» именно для этой цели ). Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.

Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В ) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.

Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых ) малый обратный ток, а следовательно он не будет забирать его на себя, снижая яркость шунтируемого светодиода.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера ). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА ), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В ).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов ) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В ) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Если нет нужного резистора

Нужное сопротивление (R) и мощность (P) резистора можно получить, комбинируя в последовательно-параллельном порядке резисторы других номиналов и мощностей.

Формула сопротивления для последовательного соединения резисторов

Формула сопротивления для параллельного соединения резисторов

R = (R1 * R2) / (R1 + R2) или R = 1 / (1 / R1 + 1 / R2)

неограниченного количества:

R = 1 / (1 / R1 + 1 / R2 + … + 1 / Rn)

Мощности резисторов

Мощности резисторов в сборке рассчитываются исходя из тех-же формул, что и одиночные резисторы. При последовательном включении в формулу вычисления мощности подставляется напряжение источника питания за вычетом падения напряжения на других последовательно стоящих резисторах и светодиоде. Подробнее это будет показано на нижеследующих примерах.

Примеры

1. Заменим резистор 1,3 кОм 0,125 Вт из первого примера последовательной сборкой.

1,3 кОм = 1 кОм + 100 Ом + 100 Ом + 100 Ом

Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

I = U / (R рез. + R светодиода), где

R светодиода = U пад.номин. / I номин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

I = 12 / (1300 + 200) = 0,008 А

Теперь вычисляем фактическое падение напряжения на резисторах и светодиоде:

U пад.рез_1000 = R рез_1000 * I = 1000 * 0,008 = 8 В

U пад.рез_100 = R рез_100 * I = 100 * 0,008 = 0,8 В

U пад.светодиода = R светодиода * I = 200 * 0,008 = 1,6 В

P рез_1000 = (12 −(0,8 + 0,8 + 0,8 + 1,6)) 2 / 1000 = 0,064 Вт

P рез_100 = (12 −(8 + 0,8 + 0,8 + 1,6)) 2 / 100 ≈ 0,0064 Вт

Итого, исходя из стандартных мощностей резисторов, получаем 1 кОм 0,125 Вт и 3 резистора 100 Ом по 0,05 Вт. Включив резисторы указанного номинала последовательно, мы получим общее сопротивление 1,3 кОм нужной нам мощности.

2. Заменим резистор 39 кОм 2 Вт из второго примера параллельной сборкой.

Занеся формулу R = 1 / (1 / R1 + 1 / R2 + 1 / R3) в Excel, выясним, что
41,2 кОм ≈ параллельному соединению 100 кОм, 130 кОм и 150 кОм. Точнее это будет сопротивление 41053 Ом.

Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

I = U / (R рез. + R светодиода), где

R светодиода = U пад.номин. / I номин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

I = 220 / (41053 + 200) ≈ 0,005 А

Теперь вычисляем фактическое падение напряжения на светодиоде:

U пад.светодиода = R светодиода * I = 200 * 0,005 = 1 В

Теперь у нас есть все данные для расчёта мощностей:

P рез_68 = (220 −1) 2 / 100000 ≈ 0,48 Вт

P рез_100 = (220 –1) 2 / 130000 ≈ 0,37 Вт

P рез_110 = (220 –1) 2 / 150000 ≈ 0,32 Вт

Итого, исходя из стандартных мощностей резисторов, получаем все резисторы по 0,5 Вт. Включив резисторы указанного номинала параллельно, мы получим общее сопротивление 41 кОм нужной нам мощности.

Указанные выше параллельный и последовательный способы можно комбинировать, без проблем создавая вот такие сборки, которые также легко расчитываются при их разбивании на фрагменты:

Полезные ссылки:

Физика работы светодиода — моя статья о физических процессах на уровне электронов, вызывающих свечение светодиода.

http://www.infor.sp.ru/led_eff.htm — формулы светодиодов (из кандел в люмены, телесный угол, расчёт эффективности). На сайте много разной информации по светодиодам.

Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, - длинный — длинную ножку светодиода - на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, - на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите , то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор - цвет линзы.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

    Vps - напряжение источника питания;

    Vdf - прямое падение напряжения на светодиоде в нормальном режиме;

    If - номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить , отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R - по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Вот так светодиод выглядит в жизни:
А так обозначается на схеме:

Для чего служит светодиод?
Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка
Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности - катод имеет электрод большего размера (но это не официальные метод).


Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов
Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно...
Резистор R определяется по формуле:
R = (V S - V L ) / I

V S = напряжение питания
V L = прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,
R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:
V = напряжение через резистор (V = S - V L в данном случае)
I = ток через резистор
Итак R = (V S - V L ) / I

Последовательное подключение светодиодов.
Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.
Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.


Пример расчета:
Красный, желтый и зеленый диоды - при последовательном соединении необходимо напряжение питания - не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S - V L ) / I = (9 - 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!
Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…


Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы
Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны:)