Мультиметры М83. Микросхемы ICL7106, ICL7106R, ICL7106S - АЦП (характеристики, даташит) Выпускают ли микросхему 7106 с шагом 1мм

Устройство цифровых мультиметров 830-й серии, наиболее часто встречающиеся неисправности и способы их устранения.

В настоящее время выпускается огромное разнообразие цифровых измерительных приборов различной степени сложности, надежности и качества. Основой всех современных цифровых мультиметров является интегральный аналого-цифровой преобразователь напряжения (АЦП). Одним из первых таких АЦП, пригодных для построения недорогих портативных измерительных приборов, был преобразователь на микросхеме ICL71O6, выпущенной фирмой MAXIM. В результате было разработано несколько удачных недорогих моделей цифровых мультиметров 830-й серии, таких как М830В , М830, М832, М838. Вместо буквы М может стоять DT.
В настоящее время эта серия приборов является самой распространенной и самой повторяемой в мире.


Технические характеристики цифровых мультиметров серии M83:

· Количество измерений в секунду. 2

· Постоянное напряжение U=0,1мВ - 1000В (входное сопротивление 1 МОм),

· Переменное напряжение U~ 0,1В - 750В

· Постоянный ток I= 2?A - 10A

· Диапазон частот по перем. току 40 - 400Гц

· Сопротивление R 0,1 Ом - 2 Мом

· Входное сопротивление R 1 Мом

· Встроенный генератор синус1000Гц

· Коэффициент усиления транзисторов h21 до 1000

· Проверка диодов 3В / 0.8мА

· Габариты, мм 65 ? 125 ? 28

· Вес, грамм (с батареей) 180

· Сервис - Индикация разряда батарейки

· Индикация перегрузки «1»


Кроме того, в некоторых моделях есть режим звуковой прозвонки соединений, измерения температуры с термопарой и без термопары, генерации меандра частотой 50...60 Гц или 1 кГц.
Основной изготовитель мультиметров этой серии - фирма Precision Mastech Enterprises (Гонконг).

Рис. 1. Структурная схема АЦП 7106


Основа мультиметра - АЦП IC1 типа 7106 (ближайший отечественный аналог - микросхема 572ПВ5). Его структурная схема приведена на рис. 1, а цоколевка для исполнения в корпусе DIP-40 - на рис. 2. Перед ядром 7106 могут стоять разные префиксы в зависимости от производителя: ICL7106, ТС7106 и т.д. В последнее время все чаще используются бескорпусные микросхемы (DIE chips), кристалл которых припаивается непосредственно на печатную плату.



Рис. 2. Цоколевка АЦП 7106 в корпусе DIP-40


Рассмотрим схему мультиметра М832 фирмы Mastech (рис. 3).



На вывод 1 IC1 подается положительное напряжение питания батареи 9V , на вывод 26 - отрицательное. Внутри АЦП находится источник стабилизированного напряжения 3V , его вход соединен с выводом 1 IC1, а выход - с выводом 32. Вывод 32 подсоединяется к общему выводу мультиметра и гальванически связан с входом СОМ прибора. Разность напряжений между выводами 1 и 32 составляет примерно 3V в широком диапазоне питающих напряжений - от номинального до 6,5 В. Это стабилизированное напряжение подается на регулируемый делитель R11, VR1, R13, а с его выхода на вход микросхемы 36 (в режиме измерения токов и напряжений). Делителем задается потенциал U ег на выводе 36, равный 100 мВ. Резисторы R12, R25 и R26 выполняют защитные функции. Транзистор Q102 и резисторы R109, R110nR111 отвечают за индикацию разряда батареи питания. Конденсаторы С7, С8 и резисторы R19, R20 отвечают за отображение десятичных точек дисплея.



Рис. 3. Принципиальная схема мультиметра М832


Диапазон рабочих входных напряжений Umax напрямую зависит от уровня регулируемого опорного напряжения на выводах 36 и 35 и составляет:

Стабильность и точность показаний дисплея зависят от стабильности этого опорного напряжения. Показания дисплея N зависят от входного напряжения UBX и выражаются числом:


Рассмотрим работу прибора в основных режимах.


Измерение напряжения

Упрощенная схема мультиметра в режиме измерения напряжения представлена на рис. 4. При измерении постоянного напряжения входной сигнал подается на R1...R6, с выхода которого через переключатель (по схеме 1-8/1... 1-8/2) подается на защитный резистор R17. Этот резистор, кроме того, при измерениях переменного напряжения вместе с конденсатором СЗ образует фильтр нижних частот. Далее сигнал поступает на прямой вход микросхемы АЦП, вывод 31. На инверсный вход микросхемы подается потенциал общего вывода, вырабатываемый источником стабилизированного напряжения 3V , вывод 32.



Рис. 4. Упрощенная схема мультиметра в режиме измерения напряжения


При измерениях переменного напряжения оно выпрямляется однополупериодным выпрямителем на диоде D1. Резисторы R1 и R2 подобраны таким образом, чтобы при измерении синусоидального напряжения прибор показывал правильное значение. Защита АЦП обеспечивается делителем R1...R6 и резистором R17.


Измерение тока

Рис. 5. Упрощенная схема мультиметра в режиме измерения тока


В режиме измерения постоянного тока последний протекает через резисторы RO, R8, R7 и R6, коммутируемые в зависимости от диапазона измерения. Падение напряжения на этих резисторах через R17 подается на вход АЦП, и результат выводится на дисплей. Защита АЦП обеспечивается диодами D2, D3 (в некоторых моделях могут не устанавливаться) и предохранителем F.


Измерение сопротивления

Рис. 6. Упрощенная схема мультиметра в режиме измерения сопротивления


В режиме измерения сопротивления используется зависимость, выраженная формулой (2). На схеме видно, что один и тот же ток от источника напряжения +LJ протекает через опорный резистор Ron и измеряемый резистор Rx (токи входов 35, 36, 30 и 31 пренебрежимо малы) и соотношение U BX
и Uon равно соотношению сопротивлений резисторов Rx и Ron. В качестве опорных резисторов используются R1....R6, в качестве токозадающих используются R10 и R103. Защита АЦП обеспечивается терморезистором R18 (в некоторых дешевых моделях используются обычные резисторы номиналом 1...2 кОм), транзистором Q1 в режиме стабилитрона (устанавливается не всегда) и резисторами R35, R16 и R17 на входах 36, 35 и 31 АЦП.


Режим прозвонки.

В схеме прозвонки используется микросхема IC2 (LM358), содержащая два операционных усилителя. На одном усилителе собран звуковой генератор, на другом - компаратор. При напряжении на входе компаратора (вывод 6) меньше порогового, на его выходе (вывод 7) устанавливается низкое напряжение, открывающее ключ на транзисторе Q101, в результате чего раздается звуковой сигнал. Порог определяется делителем R103, R104.
Защита обеспечивается резистором R106 на входе компаратора.


Дефекты мультиметров.

Все неисправности можно разделить на заводской брак и повреждения, вызванные ошибочными действиями оператора.
Поскольку в мультиметрах используется плотный монтаж, то возможны замыкания элементов, плохие пайки и поломка выводов элементов, особенно расположенных по краям платы. Ремонт неисправного прибора следует начинать с визуального осмотра печатной платы.
Наиболее часто встречающиеся заводские дефекты мультиметров М832 приведены в таблице.


Заводские дефекты мультиметров М832
Проявление дефекта Возможная причина Устранение дефекта
При включении прибора дисплей загорается и затем плавно гаснет Неисправность задающего генератора микросхемы АЦП, сигнал с которого подается на подложку ЖК-дисплея Проверить элементы С1 и R15
При включении прибора дисплей загорается и затем плавно гаснет. При снятой задней крышке прибор нормально работает При закрытой задней крышке прибора контактная винтовая пружина ложится на резистор R15 и замыкает цепь задающего генератора Отогнуть или чуть укоротить пружину
При включении прибора в режим измерения напряжения показания дисплея меняются от 0 до 1 Неисправны или плохо пропаяны цепи интегратора: конденсаторы С4, С5 и С2 и резистор R14 Пропаять или заменить С2, С4, С5, R14
Прибор долго обнуляет показания Низкое качество конденсатора СЗ на входе АЦП (вывод 31) Заменить СЗ на конденсатор с малым коэффициентом абсорбции
При измерении сопротивлений показания дисплея долго устанавливаются Низкое качество конденсатора С5 (цепь автокоррекции нуля) Заменить С5 на конденсатор с малым коэффициентом абсорбции
Прибор неправильно работает во всех режимах, микросхема IC1 перегревается. Замкнулись между собой длинные выводы разъема для проверки транзисторов Разомкнуть выводы разъема
При измерении переменного напряжения показания прибора «плывут», например, вместо 220 В изменяются от 200 В до 240 В Потеря емкости конденсатора СЗ. Возможна плохая пайка его выводов или просто отсутствие этого конденсатора Заменить СЗ на исправный конденсатор с малым коэффициентом абсорбции
При включении мультиметр или постоянно пищит, или наоборот, молчит в режиме прозвонки соединений Плохая пайка выводов микросхемы Ю2 Пропаять выводы IC2
Сегменты на дисплее пропадают и появляются Плохой контакт ЖК-дисплея и контактов платы мультиметра через токопроводящие резиновые вставки Для восстановления надежного контакта нужно:
поправить токопроводящие резинки;
протереть спиртом соответствующие контактные площадки на печатной плате;
облудить эти контакты на плате


Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения частотой 50...60 Гц и амплитудой в несколько вольт. В качестве такого источника переменного напряжения можно взять мультиметр М832, у которого есть режим генерации меандра. Для проверки дисплея следует положить его на ровную поверхность дисплеем вверх, подсоединить один щуп мультиметра М832 к общему выводу индикатора (нижний ряд, левый вывод), а другой щуп мультиметра прикладывать поочередно к остальным выводам дисплея. Если удается получить зажигание всех сегментов дисплея, значит, он исправен.
Вышеописанные неисправности могут появиться и в процессе эксплуатации. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок по входу. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки питающего напряжения и работоспособности АЦП: напряжения стабилизации 3V и отсутствия пробоя между выводами питания и общим выводом АЦП.
В режиме измерения тока при использовании входов V, ? и mА, несмотря на наличие предохранителя, возможны случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды D2 или D3. Если в мультиметре установлен предохранитель, не соответствующий требованиям инструкции, то в этом случае возможно выгорание сопротивлений R5...R8, причем визуально на сопротивлениях это может никак не проявиться. В первом случае, когда пробивается только диод, дефект проявляется только в режиме измерения тока: ток через прибор протекает, но дисплей показывает нули. В случае выгорания резисторов R5 или R6 в режиме измерения напряжения прибор будет завышать показания или показывать перегрузку. При полном сгорании одного или обоих резисторов прибор не обнуляется в режиме измерения напряжения, но при замыкании входов дисплей устанавливается на нуль.
При сгорании резисторов R7 или R8 на диапазонах измерения тока 20 мА и 200 мА прибор будет показывать перегрузку, а в диапазоне 10А - только нули.
В режиме измерения сопротивления повреждения происходят, как правило, в диапазонах 200 Ом и 2000 Ом. В этом случае при подаче на вход напряжения могут сгорать резисторы R5, R6, R10, R18, транзистор Q1 и пробиваться конденсатор С6. Если полностью пробит транзистор Q1, то при измерении сопротивления прибор будет показывать нули. При неполном пробое транзистора мультиметр с разомкнутыми щупами будет показывать сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкается переключателем накоротко и на показания мультиметра не влияет. При пробое конденсатора С6 мультиметр не будет измерять напряжение в диапазонах 20V, 200V и 1000V или существенно занижать показания в этих диапазонах.
В случае отсутствия индикации на дисплее при наличии питания на АЦП или визуально заметного выгорания большого количества элементов схемы существует большая вероятность повреждения АЦП. Исправность АЦП проверяется контролем напряжения источника стабилизированного напряжения 3V. На практике АЦП выгорает только при подаче на вход высокого напряжения, гораздо выше 220V. Очень часто при этом в компаунде бескорпусного АЦП появляются трещины, повышается ток потребления микросхемы, что приводит к ее заметному нагреву.
При подаче на вход прибора очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и по печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1 ...R6.
У дешевых моделей серии DT длинные выводы деталей могут закорачиваться на экран, расположенный на задней крышке прибора, нарушая работу схемы. У Mastech такие дефекты не наблюдаются.
Источник стабилизированного напряжения 3V в АЦП у дешевых китайских моделей может на практике давать напряжение 2,6...3,4V, а у некоторых приборов перестает работать уже при напряжении питающей батареи 8,5 В.
В моделях DT используются низкокачественные АЦП, они очень чувствительны к номиналам цепочки интегратора С4 и R14. В мультиметрах фирмы Mastech высококачественные АЦП позволяют использовать элементы близких номиналов.
Часто в мультиметрах DT при разомкнутых щупах в режиме измерения сопротивления прибор очень долго подходит к значению перегрузки ("1" на дисплее) или не устанавливается совсем. "Вылечить" некачественную микросхему АЦП можно уменьшив номинал сопротивления R14 с 300 до 100 кОм.
При измерении сопротивлений в верхней части диапазона прибор "заваливает" показания, например, при измерении резистора сопротивлением 19,8 кОм показывает 19,3 кОм. "Лечится" заменой конденсатора С4 на конденсатор величиной 0,22...0,27 мкФ.
Поскольку дешевые китайские фирмы используют низкокачественные бескорпусные АЦП, то нередки случаи обрыва выводов, при этом определить причину неисправности очень трудно и проявляться она может по-разному, в зависимости от оборванного вывода. Например, не горит один из выводов индикатора. Поскольку в мультиметрах используются дисплеи со статической индикацией, то для определения причины неисправности необходимо проверить напряжение на соответствующем выводе микросхемы АЦП, оно должно быть около 0,5V относительно общего вывода. Если оно равно нулю, то неисправен АЦП.
Эффективным способом поиска причины неисправности является прозвонка выводов микросхемы аналого-цифрового преобразователя следующим образом. Используется еще один, разумеется, исправный, цифровой мультиметр.
Он включается в режим проверки диодов. Черный щуп, как обычно, устанавливается в гнездо СОМ, а красный в гнездо VQmA. Красный щуп прибора подсоединяется к выводу 26 (минус питания), а черный поочередно касается каждой ножки микросхемы АЦП. Поскольку на входах аналого-цифрового преобразователя установлены защитные диоды в обратном включении, то при таком подключении они должны открыться, что будет отражено на дисплее как падение напряжения на открытом диоде. Реальная величина этого напряжения на дисплее будет несколько больше, т.к. в схеме включены резисторы. Точно так же проверяются все выводы АЦП при подключении черного щупа к выводу 1 (плюсу питания АЦП) и поочередного касания остальных выводов микросхемы. Показания прибора должны быть аналогичными. Но если поменять полярность включения при этих проверках на противоположную, то прибор должен показывать всегда обрыв, т.к. входное сопротивление исправной микросхемы очень велико. Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме. Если же прибор показывает обрыв при любом подключении исследуемого вывода, то это на девяносто процентов говорит о внутреннем обрыве. Указанный способ проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.
Бывают неисправности, связанные с некачественными контактами на галетном переключателе, прибор работает только при нажатом галетнике. Фирмы, производящие дешевые мультиметры, редко покрывают дорожки под галетным переключателем смазкой, отчего они быстро окисляются. Часто дорожки бывают чем-нибудь загрязнены. Ремонтируется следующим образом: из корпуса вынимается печатная плата, и дорожки переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, прибор починен.
У приборов серии DT бывает иногда так, что переменное напряжение измеряется со знаком минус.
Это указывает на неправильную установку D1, обычно из-за неправильной маркировки на корпусе диода.
Случается, что изготовители дешевых мультиметров ставят низкокачественные операционные усилители в цепи звукового генератора, и тогда при включении прибора раздается жужжание зуммера. Этот дефект устраняется подпаиванием электролитического конденсатора номиналом 5 мкФ параллельно цепи питания. Если при этом не обеспечивается устойчивая работа звукового генератора, то необходимо заменить операционный усилитель на LM358P.
В большинстве приборов, выпускаемых в последнее время, применяются бескорпусные (DIE chips) АЦП. Кристалл устанавливается непосредственно на печатную плату и заливается смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к. при выходе АЦП из строя, что встречается достаточно часто, заменить его трудно. Приборы с бескорпусными АЦП иногда бывают, чувствительны к яркому свету. Дело в том, что индикатор и плата прибора обладают некоторой прозрачностью, и свет, проникая сквозь них, попадает на кристалл АЦП, вызывая фотоэффект. Для устранения этого недостатка нужно вынуть плату и, сняв индикатор, заклеить место расположения кристалла АЦП (его хорошо видно сквозь плату) плотной бумагой.
При покупке мультиметров DT следует обратить внимание на качество механики переключателя, следует обязательно прокрутить галетный переключатель мультиметра несколько раз, чтобы убедиться, что переключение происходит четко и без заеданий: дефекты пластмассы не поддаются ремонту.

Эта микросхема получила широкое распространение в измерительной технике. Практически все мультиметры (выпуска 90-х и 2000-х) использовали в качестве «мозга» именно её. Для восстановления почти утраченных приборов и заказывалась. Буду ремонтировать всем хорошо известный (или почти всем) прибор MASTECH M890F. Обзор исключительно для тех, кто дружит с паяльником.
Эти микросхемы я заказал в середине августа. Шли чуть больше месяца.


К сожалению, этот товар в данный момент недоступен. Покупал спонтанно. Решающую роль сыграла цена. В своё время наше предприятие заказывало эти МС в хорошо известной московской фирме. Прайс немного изменился в соответствии с курсом доллара.


Цена около 33 рублей за штуку на Али - это почти даром. Но не в этом суть. Расскажу, для чего брал, и что сделал.
А сначала смотрим, как упаковали и в каком виде всё дошло. Эта информация иногда бывает важной.


Стандартный бумажный пакет, «пропупыренный» изнутри.


Микросхемы своими ножками были вставлены в вспененный полиэтилен (попытался объяснить как смог), поэтому ни одна не пострадала.


Эти микросхемы стоЯт в одних из самых популярных мультиметрах фирмы MASTECH M890F. Но не только в них. Они используются и в других приборах этой фирмы (и не только). Самые распространённые: М830, М832, М838.
Основой данного прибора (M890F), как и большинства недорогих мультиметров, является аналого-цифровой преобразователь ICL706, работающий по принципу двойного интегрирования. Это полный аналог хорошо известной отечественной ИМС К572ПВ5. Можно и её использовать в качестве ремкомплекта. Но она дороже.
Основными ошибками эксплуатации, приводящими к неисправности прибора, являются проведение измерений с перегрузкой по входу и выбор неправильного режима измерений в результате невнимательности или спешки. Это приводит к пробою АЦП, перегоранию дорожек, выходу из строя других микросхем. Не менее опасным является переключение пределов и режимов измерения без отключения от измеряемой цепи. При этом нередко выгорают проводящие дорожки переключателя. В результате чего прибор уже не подлежит ремонту. Это является недостатком всех приборов с подобного типа переключателями.
Что именно явилось причиной порчи данного мультиметра, я не знаю.


Испарились дорожки на пределах: 20кОм, 200кОм и 200мВ. Теоретически и их восстановить можно. Но это уже искусство аппликации. Пока же испытаю свои силы в искусстве ремонта:)
У меня их (мультиметров) набралось несколько штук. Сам лично не спалил ещё ни одного. Неисправные собирал у знакомых. Лет десять назад ремонт был нецелесообразен из-за стоимости микросхем (уже писал). Да и восстанавливать подобные приборы можно только с учётом их будущей инвалидности. Часть функций будет утеряна безвозвратно, даже после восстановления. Дорожки назад не приклеить.:(
Вот он самый распространённый мультиметр.

Видок у него конечно поношенный. Но и годов ему немало.
При частых разборах отрывается один или несколько проводков шлейфа, ну очень жёсткий.


Варианта только два: либо не лазить, либо перепаивать.

Как видите, я перепаял. Процедура утомительная.


У этого прибора кроме процессора погорели и печатные проводники. Их я восстановил. Сгорело несколько образцовых сопротивлений. Их необходимо подбирать очень точно. От них зависит погрешность всего прибора. У этих сопротивлений в маркировке на одну полоску больше.
Попадаются и такие экземпляры.


Это немного другой прибор, хотя той же фирмы. Но в качестве примера годится. Хорошо видно, что плата прогорела в режиме измерения сопротивления. Это куда надо сунуть, чтобы в плате образовалась такая дыра!
Я то понял. Но не все знают, что напряжение в сети измеряется в Вольтах, а не в Омах:)
Восстановить тоже возможно, но некоторыми пределами измерения придётся пожертвовать. Но это уже будет другая история…
А это М832, который уже не восстановить.


В подобных мультиметрах необходимо сначала удалить «кляксу», затем припаять микросхему к печатным контактам. Они любезно предусмотрены.
Вернусь к М890.
Первым делом при прогарах платы и перегорании печатных проводников оказываются неисправными процессор IC1, интегральный таймер IC8 7555 и две МС LM358 измерителя ёмкости. Неисправные МС часто засаживают напряжение питания. IC8 7555 расположена на верхней плате.
Ток потребления исправного мультиметра около 4мА. Конкретно процессор потребляет чуть меньше 2мА. И никак иначе. Это необходимо запомнить. Повышенный ток потребления говорит о какой-либо неисправности.
Прилагаю отредактированную схему мультиметра. По ней очень удобно ремонтировать и калибровать прибор. Схема изначально скачана с интернета и редактировалась на протяжении нескольких лет. В схеме возможны недочёты. Возможно, и не всё успел подправить.

IC8 7555 можно просто выпаять из схемы, что я и сделал. Мультиметр не сможет измерять частоту. Для меня это не критично.
В интернете присутствует также схема с более поздней модификацией этого прибора.

Это (можно так сказать) совершенно другой прибор. По моему мнению, более убогий. В схеме присутствуют упрощения.
Все элементы схемы собраны на одной плате. Чисто внешне (без вскрытия) отличить очень сложно, разве что по весу он легче. И продавался на несколько лет позже и дешевле.
Перейду непосредственно к ремонту.
Чтобы определиться с тем, что всё-таки сгорело, необходимо откинуть верхнюю плату. Для этого необходимо открутить четыре маленьких винтика и запомнить, как расположены ламели у переключателя. Они имеют особенность соскакивать в самый неподходящий момент. А лучше всего сразу снять, чтобы не искать их потом на полу.

Прибор неплохо работает и без верхней платы. Необходимо только перемкнуть 2 и 6 контакты разъёма (я их пометил на рисунке). По ним проходит питание 9В. При этом пропадут точки и измеряемые величины на дисплее. При ремонте это не очень то и важно.
Практически всегда сгорает защитный транзистор Q4 (9014).

Я его уже выпаял. Мультиметр может работать и без него. Но лучше заменить. Какая ни какая, но всё же защита.
Теперь нужно измерить напряжение между ножками 1 и 32 процессора. При этом переключатель РЕМОНТИРУЕМОГО мультиметра должен стоять в любом режиме, кроме измерения сопротивления.


Оно должно быть приблизительно в указанных пределах (2,8-3,0В). При превышении значений (обычно больше 6В) с вероятностью 99% процессор мёртв.
Сам проц находится с другой стороны платы под индикатором. Чтобы до него добраться, необходимо открутить четыре самореза и снять модуль с индикатором.
Вот такие микросхемы стоят в мультиметрах MASTECH M890F. Чаще встречались «кляксы».


И в том и в другом случае неисправная микросхема выпаивается. Вместо неё ставится обычная МС из Китая. Что я успешно проделал.


Можно впаять и наш аналог КР572ПВ5. В своё время был впаян в другой неисправный прибор. Уже лет десять работает.


Вот только расстояние между ножками незначительно отличается. Придётся малость подгибать.
После проделанных процедур мультиметр ожил. Измерил напряжение на аккумуляторе.


Почти правда. Осталось настроить мультиметр по образцовым приборам. Но не у всех они есть. Как вариант можно подогнать показания методом сравнения с другим прибором, к которому у вас есть доверие.
Начинать необходимо с калибровки постоянных напряжений (VR1). И только затем переменных (VR2). Последовательность остальных регулировок на «скорость» не влияет:)
Точность измерения сопротивлений определяется точностью образцовых сопротивлений внутри прибора и никакими потенциометрами не регулируется.
На этом всё.
И ещё кое-что в конце.
Я постарался рассказать про применение микросхем ICL706 в качестве ремкомплекта. Невозможно описать все неисправности в мультиметрах, при которых необходима их замена. Кому что-то неясно по поводу микросхем, задавайте вопросы. За советами по ремонту обращайтесь в личку.
Надеюсь, хоть кому-то помог.
Удачи всем!

Планирую купить +23 Добавить в избранное Обзор понравился +60 +100

Аналого-цифровые преобразователи ВТ7106 и ВТ7107. Справочные данные

Микросхемы ВТ7106 и ВТ7107 представляют собой высококачественные 3,5-разрядные аналого-цифровые преобразователи с малым энергопотреблением и прямым выходом на индикатор. Все активные компоненты, необходимые для работы преобразователя, содержатся в кристалле КМОП-микросхемы. В нее включены: блок аналого-цифрового преобразования напряжение - код; дешифратор семисегментных индикаторов; интерфейсная схема, управляющая индикатором (только для ВТ7106); источник опорного напряжения и тактовый генератор. ВТ7106 предназначена для работы с жидкокристаллическим индикатором, а ВТ7107 - со светодиодным.

Микросхема сочетает в себе высокую точность и экономичность. Величина ухода нуля не превышает 100 мкВ для диапазона 2 В и 10 мкВ для диапазона 200 мВ, величина входного тока - 10 дА, ошибка счета - одну единицу младшего разряда. Встроенная система корректировки нуля устраняет его смещение без использования внешней системы установки. Микросхемы размещаются в 40-выводных корпусах типа ДИП, их цоколевка приведена на рис. 1. Функциональное назначение выводов приведено в табл.1, предельные режимы эксплуатации (при температуре 25°С) - в табл.2, электрические параметры схемы (при напряжении питания 10В, температуре 25°С, частоте тактовых импульсов 48 кГц, если не оговорено иное) - в табл.3.

Особенности микросхем:

  • нулевые показания индикатора при нулевом входном напряжении;
  • правильное определение полярности входного сигнала при очень малом, в пределах точности измерений, входном сигнале;
  • малый уровень входного шума;
  • небольшая мощность (6 мВт), потребляемая микросхемой от источника питания (без учета энергии, расходуемой ЖКИ или светодиодным индикатором);
  • высокоомный дифференициальный КМОП-вход (входное сопротивление - порядка 1012 Ом);
  • прямой выход на ЖКИ-индикатор для ВТ7106 и на светодиодный индикатор для ВТ7107;
  • отсутствие дополнительных активных компонентов;
  • высокая линейность преобразования (ошибка - менее единицы младшего разряда);
  • наличие внутреннего источника опорного напряжения с малым температурным дрейфом;
  • возможные применения: щитовые цифровые измерительные приборы, цифровые мультиметры, термометры, измерители емкости, РН-метры, фотометры и т.п.

Рис. 1. Корпус микросхем типа ДИП

Таблица 1

Номер вывода Обозначение вывода Описание вывода
1 V + Положительный вывод источника питания
2 D1 Вывод управления секцией D индикатора единиц
3 С1 Вывод управления секцией С индикатора единиц
4 В1 Вывод управления секцией В индикатора единиц
5 А1 Вывод управления секцией А индикатора единиц
6 F1 Вывод управления секцией F индикатора единиц
7 G1 Вывод управления секцией G индикатора единиц
8 Е1 Вывод управления секцией Е индикатора единиц
9 D2 Вывод управления секцией 0 индикатора десятков
10 С2 Вывод управления секцией С индикатора десятков
11 В2 Вывод управления секцией В индикатора десятков
12 А2 Вывод управления секцией А индикатора десятков
13 F2 Вывод управления секцией F индикатора десятков
14 Е2 Вывод управления секцией Е индикатора десятков
15 D3 Вывод управления секцией D индикатора сотен
16 ВЗ Вывод управления секцией В индикатора сотен
17 F3 Вывод управления секцией F индикатора сотен
18 ЕЗ Вывод управления секцией Е индикатора сотен
19 АВ4 Вывод управления обеими половинами индикатора 1 тысячи
20 POL Вывод управления знаком минус индикатора
21 ВР
GND
Общий вывод индикатора ЖКИ (для ВТ7106)
Общий провод ("земля") цифровой части (для ВТ7107)
22 G3 Вывод управления секцией G индикатора сотен
23 A3 Вывод управления секцией А индикатора сотен
24 СЗ Вывод управления секцией С индикатора сотен
25 G2 Вывод управления секцией G индикатора десятков
26 V - Отрицательнй вывод источника питания
27 V INT Выход интегратора
28 V BUF Вывод подключения интегрирующего резистора
29 C AZ Вывод подключения конденсатора автоматической установки нуля
30 V - N Аналоговый вход низкого уровня
31 V + N Аналоговый вход высокого уровня
32 АС Аналоговая "земля"
33 C - REF
34 C + REF Вывод подключения конденсатора опорного напряжения
35 V - REF
36 V + REF Вывод подключения внешнего опорного напряжения
37 TEST Контрольный выход
38 OSC3 Вывод подключения конденсатора генератора тактовых импульсов
39 OSC2 Вывод подключения резистора генератора тактовых импульсов
40 OSC1 Общая точка соединения резистора и конденсатора генератора тактовых импульсов

Таблица 2

Таблица 3

Наименование параметра, единица измерения Обозначение Норма Режим измерения
Мин Тип Макс
Напряжение питания (ВТ7106), В V ПИТ 7 10 12 -
Напряжение обоих источников питания (ВТ7 107), В V ПИТ 3,5 5 6 -
Ток, потребляемый от источника питания (исключая ток светодиодов для ВТ7107), мА I DD - 0,6 1,0 V N =0
Входной ток утечки, пА I LEAK 1 10 V N =0
Напряжение управления сегментом АВ4 (ВТ7106), В V LCDS 4 5 6 -
Ток управления сегментом (кроме АВ4, ВТ7107), мА I LED 5 7 - Напряж. на сегменте 3В
Ток управления сегментом АВ4 (ВТ7107), мА I LED1 10 15 - Напряж. на сегменте 3В
Напряжение аналоговой "земли" (по отношению к выводу положит. источника питания), В V ANACOM 2,7 3,0 3,3 25 кОм между землей и положительным выводом источника питания
Уровень шумов (от пика до пика), мкВ V N - 15 -
Показания счетчика при нулевом входном напряжении -000,0 ±000,0 +000,0 При V N =0 на диапазоне 200 мВ
Относительные показания счетчика 999 999/1000 1000 При V N =V REF =100мВ
Линейность преобразования (максимальное отклонение от идеальной прямой линии), число единиц младшего разряда -1 ±0,2 +1 На диапазоне 200мВ или 2В
Дрейф нуля мкВ/ ° С - 0,2 1 V N =0,T OPR =0...70 ° C
Ошибка разбалансировки, число единиц младшего разряда -1 ±0,2 +1 V - N =V + N =200 мВ
Нелинейность коэффициента преобразования, мкВ/В C MRR - 50 200 V CM =±1 В, V N =0 В, диапазон 200 мВ

Рис. 2. Схема включения БИС BT7106


Рис. 2. Схема включения БИС BT7107

Микросхема ВТ7106 питается от одного источника напряжением 9... 10 В, положительный полюс которого подключается к выводу 1, отрицательный - к выводу 26. Для питания ВТ7107 необходимы два источника по 5 В. Общей точкой обоих источников является вывод 21, +5 В подается на вывод 1, -5 В - на вывод 26. Схема включения БИС ВТ7106 приведена на рис. 2, а ВТ7107 - на рис. 3.

Микросхемы работают следующим образом (рис. 4). Измеряемое напряжение подается на интегрирующий конденсатор C INT в течение фиксированного интервала времени, определяемого тактовым генератором. Накопленный конденсатором заряд будет пропорционален входному напряжению при условии постоянства тактовой частоты и входного тока.

Рис. 4. Принцип работы микросхем

Затем этот конденсатор разряжается до нуля опорным сигналом с полярностью, противоположной входному. Интервал времени, необходимый для разряда интегрирующего конденсатора, измеряется счетчиком счетных импульсов, для того чтобы вывести результат на дисплей. Он пропорционален средней величине входного сигнала в течение времени интегрирования.

1x — 100pF Capacitor
1x — 10n Capacitor
1x — 100n Capacitor
1x — 220n Capacitor
1x — 470n Capacitor
2x — 10uF Capacitor
3x — 1N4148 Diode
1x — ICL7107 IC
1x — 7660 IC
2x — MAN6910 2-digit LED 7-segment Display

Этот цифровой вольтметр идеально подходит для использования в источнике постоянного тока. Он включает в себя 3,5-разрядный светодиодный дисплей с общим катодом. Он измеряет напряжение постоянного тока от 0 до 199.9V с разрешением 0.1V. Вольтметр основан на одном чипе ICL7107 и может быть установлен на небольшую 3cm х 7cm печатную плату. Схема должна быть снабжена 5V источником питания и потребляет ток всего около 25mA.

Яркость светодиодных сегментов дисплее может быть изменена путем добавления или удаления числа диодов 1N4148, которые соединены последовательно.

Вольтметр также может быть настроен для измерения напряжения для различных диапазонов. Замена резистора 1М до 100K позволят измерять напряжение 0 — 19.99V \ 0.01V (10mV) — точность.

Калибровка
Регулируйте 10K потенциометр для установки опорного напряжения между выводами 35 и 36 микросхемы ICL7107, напряжение между этими выводами должно быть равным — 1В.

Возможно использование других индикаторов.
Источник — http://electronics-diy.com/ICL7107_volt_meter.php

"Сердцем" мультиметра является микросхема аналого-цифрового преобразователя (АЦП), выполняющая также функции управления жидкокристаллическим (LCD -- Liquid Crystal Display) или светодиодным (LED -- Light Emission Diode) индикатором. Для того, чтобы создать мультиметр, необходимо иметь микросхему АЦП, знать ее технические характеристики, назначение выводов, варианты типового применения и несколько простых формул для расчета номиналов внешних элементов -- конденсаторов и резисторов, что требуется при различных вариантах использования АЦП. АЦП необходим для того, чтобы аналоговое значение входного напряжения преобразовать в цифровой код для отображения значения величины на LCD.

Наиболее удачен по конструкции и поэтому широко применяется АЦП серии 7106. Эта микросхема выпускается многими производителями, поэтому перед цифрами могут стоять разные буквенные сочетания. Большинство описываемых мультиметров собрано именно на основе этой микросхемы. Ее отечественный аналог -- 572ПВ5.

Микросхемы серии 7106 выпускаются в корпусах двух типов: 40-контактном PDIP для обычного монтажа на печатную плату или 44-контактном MQFP для поверхностного монтажа (рис. 1). Они абсолютно одинаковы по характеристикам, а применение корпусов разных типов зависит от конструктивных особенностей создаваемых на их основе приборов. Данные микросхемы обеспечивают:

Гарантированное отображение нулевых показаний на всех пределах измерений при входном напряжении, равном 0 В;

Определение полярности входного сигнала;

Типовое значение входного тока, равное 1 пА (1x10 -12 А);

Дрейф нуля, составляющий менее 1 мкВ/°С;

Низкое напряжение собственных шумов, менее 15 мкВ.

Он имеет встроенные схемы синхронизации и опорного напряжения. Потребляемая от источника питания мощность составляет менее 10 мВт.

Напряжение питания микросхемы может быть не более 15 В (типовое значение 9 В).

Одновременно с АЦП серии 7106 выпускаются также микросхемы серии 7107. По основным параметрам они идентичны. Однако АЦП серии 7107 требует применения двуполярного источника питания ±5 В.

Рис. 1

Рис. 2

На рис. 2 представлена функциональная схема цифрового мультиметра. Прибор содержит коммутатор К измеряемых сигналов, операционный усилитель ОУ, аналого-цифровой преобразователь АЦП и цифровой индикатор ЦИ. Таким образом, реализуется измерение на нижнем пределе измерения постоянного тока.

Ко входам коммутатора подключены различные измерительные преобразователи. Для простоты на рис. 2 показано три преобразователя. Первый -- аттенюатор А служит для преобразования постоянного напряжения высокого уровня в постоянное напряжение более низкого уровня. Второй -- прецизионный выпрямитель ПВ служит для преобразования переменного напряжения (тока) в напряжение постоянного тока. Третий преобразователь ПR преобразует сопротивление в напряжение постоянного тока. Чаше всего это просто прецизионный источник постоянного тока, который задается через измеряемое сопротивление и создает на нем падение напряжения U=IR. Таким образом, мультиметр может измерять напряжение (и токи) постоянного и переменного тока, а также сопротивление.

Число преобразователей на входе коммутатора может быть увеличено. Например, могут применяться преобразователи в постоянное напряжение емкости С, индуктивности L, температуры Г, освещенности?, частоты/и др. Для измерения температуры используется обычно датчик на основе полупроводникового диода или (чаще) мостовая схема с термодатчиком на основе металлического терморезистора или эффекта Пельтье (позволяет измерять температуру от --60 до примерно + 1000 °С).

Разумеется, чем больше преобразователей содержит мультиметр, тем сложнее его электронная начинка и дороже прибор. Впрочем, стоит отметить, что для построения типовых цифровых мультиметров выпускаются специализированные интегральные микросхемы, содержащие практически все упомянутые узлы. Именно поэтому нередко мультиметры даже разных фирм по метрологическим и электрическим характеристикам похожи "как две капли воды". Они обычно отличаются разрядностью дисплея и погрешностью. Чем последняя меньше, тем, как правило, дороже прибор, больше его габариты и масса. Последнее связано с применением прецизионных резисторов и конденсаторов, габариты и масса которых заметно больше, чем у обычных компонентов.

Некоторые мультиметры оснащены простыми средствами для прозвона цепей со звуковой индикацией (если сопротивление цепи меньше заданного в десятки Ом), тестирования микросхем различной логики, проверки диодов и транзисторов. Последняя реализуется обычно заданием в базу стабильного небольшого тока и измерением тока коллектора. Он пропорционален коэффициенту передачи тока базы В (или ИВЕ). Иногда мультиметры снабжаются средствами контроля логических микросхем и даже простым генератором тестовых сигналов на несколько частот.

Все это превращает мультиметры в действительно универсальные и довольно неприхотливые приборы.