Все разъемы материнской платы. Принцип работы материнских плат компьютеров Схема материнской платы компьютера

Материнская или системная плата - это тот фундамент, на котором построен любой современный компьютер, будь то настольный ПК, ноутбук или встраиваемая система.

Именно материнская плата объединяет такие различные по своей сути и функциональности комплектующие, как процессор, оперативная память, платы расширения и всевозможные накопители.

Именно благодаря материнской плате к компьютеру можно подключать периферийные устройства, ведь даже если набор системной логики (чипсет) поддерживает разнообразные шины и интерфейсы, к обычной микросхеме напрямую подключить, к примеру, принтер, вряд ли у кого получится.

Что же представляет собой современная материнская плата?
Разговор у нас пойдет, в основном, о платах для настольных ПК, как наиболее распространенных и близких читателю, однако значительная часть их описания применима и к платам для серверов, ноутбуков и встраиваемых компьютеров.

Системная плата - это главная и самая большая печатная плата в вычислительной машине.
По сложности изготовления самой печатной платы «материнки» отстают лишь от самых ультрасовременных графических ускорителей.

Типичная материнская плата построена на базе четырех-шестислойной текстолитовой печатной платы, в то время как некоторые видеокарты выпускаются на основе восьми- и даже десятислойных печатных плат.

Использование многослойных плат позволяет при сохранении стандартных размеров развести различные электрические цепи таким образом, чтобы их взаимовлияние было минимальным.
По тем слоям, которые находятся в глубине платы, разводятся цепи питания и заземления, а по прочим, включая верхний и нижний - собственно сигнальные цепи.

Чтобы не загружать читателя специфической информацией, остановимся лишь на двух чисто электрических параметрах материнской платы.
Поскольку микросхемы рассчитаны на работу строго оговоренных режимах, для обеспечения их надежности и долговечности необходимо качественное питание.

Конечно, значительную роль здесь играет блок питания, к которому подключается плата, однако различным компонентам необходима разная мощность, причем энергопотребление отдельных комплектующих, к примеру, процессора, непостоянно.

Все эти факторы вынуждают прибегать к дополнительным ухищрениям.
Для подачи необходимого напряжения на различные комплектующие во всех современных материнских платах используется стабилизатор напряжения, который чаще всего устанавливается непосредственно на плате, но, бывает, и выполняется в виде отдельной небольшой платы, размещаемой в целях надлежащего охлаждения в непосредственной близости от блока питания.

Стабилизатор напряжения работает в автоматическом режиме, в зависимости от того, на какие контакты подается нагрузка, иными словами, к какому разъему подключено то или иное устройство, или элемент платы.

Функция разгона процессора, часто поддерживаемая современными платами, использует ручную регулировку напряжения (в разумных пределах, безусловно), которая реализуется для пользователя через BIOS или через специализированную утилиту.

Бороться со скачками напряжения, губительными для многих комплектующих, призваны конденсаторы, способные накапливать и затем плавно отдавать заряд.
Неслучайно конденсаторов так много на материнских платах, в особенности, вокруг центрального процессора, для которого характерны резкие скачки энергопотребления, в зависимости от нагрузки.

Именно с конденсаторами связано снижение со временем надежности работы материнской платы: они емкости стареют быстрее прочих компонентов, в частности, из-за воздействия высоких температур.

В результате емкость конденсаторов падает, и они теряют способность «держать удар» и выравнивать напряжение в схеме, что негативно сказывается на прочих компонентах и, в худшем случае, выводит их из строя.
Так что рекомендации к смене компьютера каждые три года порождены не только маркетинговыми соображениями «морального устаревания», но и вполне объективные причинами.

Перейдем к непосредственным функциям материнской платы.
В обязательном порядке на этой плате размещаются системная шина, процессорный разъем, слоты для модулей оперативной памяти (возможен вариант, когда микросхемы памяти впаиваются непосредственно в плату), слоты расширения, различные контроллеры, а также порты ввода и вывода.

Как видим, системная плата объединяет в единую систему все компоненты компьютера - без нее они бы оставались просто набором не связанных друг с другом комплектующих.

Обратимся к фотографии.
На ней изображена типичная современная материнская плата P5GDC-V Deluxe производства известной тайваньской компании Asus.

Эта плата на основе набора системной логики Intel 915G рассчитана на процессоры Intel Pentium 4 в корпусировке LGA 775 и поддерживает почти все технологии, встречающиеся в современных настольных компьютерах.

Краткие характеристики этой модели:

Чипсет 915G со встроенным графическим ускорителем («северный мост») + ICH6R («южный мост»).
- Поддержка процессоров Pentium 4 или Celeron D в корпусировке LGA 775.
- Поддержка оперативной памяти DDR и DDR2 533 объемом до 4 Гбайт.
- Поддержка шины PCI Express x16 и x1.
- Поддержка шины PCI.
- Поддержка скоростных интерфейсов USB 2.0 и IEEE 1394 (FireWire).
- Контроллеры IDE и Serial ATA.
- Гигабитный сетевой контроллер.
- Восьмиканальный (7.1) звуковой контроллер.
- Форм-фактор ATX (размеры - 305 x 244 мм).

Драйвер AMD Radeon Adrenalin 19.7.2 Edition с поддержкой боевика Gears 5

Второй июльский драйвер Radeon Software Adrenalin 19.7.2 2019 Edition выпущен для поддержки бета-версии боевика Gears 5.

Драйвер GeForce 431.36 WHQL для видеокарт GeForce RTX Super

Компания Nvidia выпустила пакет драйверов GeForce 431.36, сертифицированных лабораторией Microsoft WHQL.

Драйвер AMD Radeon Adrenalin 19.7.1 с программной поддержкой RX 5700

Материнская плата , также называемая главной или системной платой (в разговорах специалистов просто “мать ”), представляет собой одно из основных устройств в компьютере и обеспечивает связь между всеми элементами. При продаже плата часто называется не по ее типу, а по типу центрального процессора, например, плата для Pentium i 3. Она изготовляется из стекловолокна, причем состоит из нескольких листов, на которые наносятся контакты (так называемая печатная плата) и имеет многослойную структуру. Вид платы показан ниже.

Ма­теринская плата крепится к стойке несколькими винтами. На ней располагаются следующие основные элементы: процессор , оперативная память , набор управляющих микросхем (чипсет) , BIOS , кэш-память , шины , слоты расширения , батарейка и другие устройства. Кроме вышеперечисленных устройств, на плате име­ются разъемы для параллельных, последовательных портов (для подключения клавиатуры и мыши), источника питания, встроенного динамика, индикаторов и кнопок, находящихся на передней панели системного блока. Тип материнской платы влияет на производительность компьютера и определяет те устройства, которые можно к ней подключить.

Для передачи данных между устройствами, расположенными на материнской плате, используются проводники, называемые шиной. Шины используются для передачи информации между устройствами и могут быть нескольких видов: шина главного процессора (на которой работает процессор и кэш-память), системная шина . Системная шина является основным источником передачи информации между устройствами, находящимися на материнской плате и вне ее, такими, как оперативная память, процессор, клавиатура, жесткий диск, флоппи-дисковод, клавиатура, мышь и так далее. Конечно, такое взаимодействие происходит не напрямую, а через специальные устройства, называемые контроллерами. Так, например, существует контроллер для клавиатуры, шины расширения (через которую происходит обмен информацией между внешними устройствами и устройствами на материнской плате, такими как звуковая плата, дисплей, сканер) и другие. Характеристики адресной шины и шины данных рассмотрены при описании процессоров, а шины расширения - далее в этой главе.

Материнская плата имеет следующие основные характеристики:

Тип платы или форм-фактор , определяет размер, разъемы питания материнской платы, количество и виды разъемов для карт расширения и пр. Ниже указаны примерные размеры материнских плат разных типов, так как на практике они могут отличаться, обычно в меньшую сторону. Кроме того указаны основные типы плат, существуют и другие модификации.

ХТ (размером 216х279 мм) введен компанией IBM в 1983 году, АТ (305х279-330 мм) введен компанией IBM в 1984 году, Baby - AT (216х254-330 мм) введен компанией IBM в 1985 году – старые форматы, которыми пользовались в 80е-90е годы. Сейчас не выпускаются.

ATX (Advanced Technology Extended) выпущен в 1995 году компанией Intel для конструкции корпуса, в котором унифицировано расположение основных устройств. Для этого типа корпуса разработана материнская плата, носящая аналогичное название АТХ. При этом в системном блоке рассчитана циркуляция воздуха, чтобы охлаждать наиболее нагреваемые устройства, кроме того, кабели рационально размещены, имеется новый тип блока питания, все порты расположены на материнской плате с выходом на заднюю стенку системного блока. В настоящее время это самый распространенный вид блока. Поддерживает платы размером 305x244 мм, имеющими до семи слотов расширения (PCI, PCI-E и AGP). Имеет 20 или 24 контактный разъем для подключения материнской платы к блоку питания. Идеален для домашнего пользователя.

mATX (microATX) выпущен 1997 году компанией Intel для конструкции небольших по высоте корпусов типа microATX , в котором унифицировано расположение основных устройств. Рассчитана на четыре слота расширения, в которые устанавливаются карты расширения PCI, PCI-E и AGP и плата имеет размеры 244х244 мм. Эти платы можно устанавливать в системные блоки АТХ, так как они имеют унифицированные с форматом АТХ отверстия для крепления и расположение основных компонентов. Имеет 20 или 24 контактный разъем для подключения материнской платы к блоку питания. Обычно используется в офисах.

Mini - ATX предназначен для мобильных процессоров и используется в тонких корпусах. Размер платы 170х170 мм.

FlexATX выпущен 1999 году компанией Intel. Имеет размер 229х191мм, и до 3х слотов расширения. Такие платы можно устанавливать в системные блоки АТХ, так как они имеют унифицированные с форматом АТХ отверстия для крепления и расположение основных компонентов.

BTX (Balanced Technology Extended) предложен компанией Intel в 2004 году. Эти платы имеют различные размеры, например, 266х325 мм, поддерживают до семи слотов расширения: один - для видеокарты PCI Express x16, два - для карт PCI Express x1, и четыре - для PCI. Имеет уменьшенную высоту материнской платы с установленным кулером. Создает прямые потоки воздуха для охлаждения устройств за счет установки материнской платы на левую сторону корпуса (в АТХ –правая). Обеспечивает пониженный уровень шума. Имеет модуль теплового баланса и поддерживающий модуль (SRM-металлическая пластина, на которой крепятся материнская плата и модуль теплового баланса). В большинство корпусов этого форм-фактора можно устанавливать и материнские платы mATX. Данный форм-фактор создавался как альтернатива АТХ, но его главное преимущество в том, чтобы охлаждение процессоров не стало критичным, так как стали выпускаться менее теплопроизводящие процессора (или менее энергоемкие).

mBTX (microBTX) выпущен в 2004 году компанией Intel , предназначен для материнских плат форм-фактора mBTX, размером 266.7х264.16 мм, поддерживают четыре слота расширения: один PCI Express x16, два - PCI Express x1 и один для PCI. Как и в BTX-корпусе имеют модуль теплового баланса и поддерживающий модуль. Используют эффективную схему отвода тепла.

ЕATX (Extended ATX) предназначен для материнских плат форм-фактора ЕATX с размерами до 304.8x330.2 мм и большим количеством слотов расширения. Используются в основном для серверов. В большинство ЕATX-корпусов можно устанавливать и материнские платы форм-фактора ATX.

Mini-ITX предназначен для блоков с небольшими размерами (170х170 мм), малым энергопотреблением и низким тепловыделением, что позволяет использовать пассивную систему охлаждения. Используются в тонких клиентах (компьютер, связанный с сервером, большая часть обработки у которого производится не на самом компьютере, а на сервере), у которых мало устройств. Если имеется твердотельный жесткий диск, то компьютер практически бесшумный.

Nano-ITX предназначен для блоков с небольшими размерами (120х120 мм), малым энергопотреблением и низким тепловыделением, что позволяет использовать пассивную систему охлаждения. Используются в тонких клиентах (компьютер, связанный с сервером, большая часть обработки у которого производится не на самом компьютере, а на сервере), у которых мало устройств. Если имеется твердотельный жесткий диск, то компьютер практически бесшумный.

Pico-ITX применяется для блоков с небольшими размерами (100х72 мм), малым энергопотреблением и низким тепловыделением, что позволяет использовать пассивную систему охлаждения. Используются в тонких клиентах (компьютер, связанный с сервером, большая часть обработки у которого производится не на самом компьютере, а на сервере), у которых мало устройств. Если имеется твердотельный жесткий диск, то компьютер практически бесшумный.

LPX в настоящее время устарел. Использовался для низкопрофильных корпусов, имеет размеры 229х279-330. Вместо того, чтобы вставлять карты расширения в материнскую плату, имелась специальная плата, вставляемая в специальный разъем на материнской карте, в которую вставлялись другие карты расширения.

Имеются и другие виды форм-факторов материнских плат, например, для домашних и офисных компьютеров: Mini -LPX (203-229x 254-279), NLX , SSI CEB (305-267), DTX (200x 244), mini -DTX (170x 200), PicoBTX (203-267), WTX (356x 426), Ultra ATX (244x 367),

Старые - Babysize (221х330), Halfsize (218х244 для 386, 486 процессоров), Fullsize (356х304), Full AT (305х350), Halfsize (244х218).

Встраиваемые (центральный процессор встроен или впаян в материнскую плату): UTX (88x 108), ETX (95x 125), XTX (95х125), COM Express (55x 125 или 110x 155), CoreExpress (58x 65), nanoETXexpress (55x 84).

Для серверов : SSI EEB (Server Standards Infrastructure Entry Electronics Bay) размером 305x259 мм, SSI CEB (SSI Compact Electronics Bay) - 305x259 мм, WTX (356x426), EATX (305x330).

Эти платы могут иметь разные размеры, например, АТХ может быть 212х305, 190х305, 192х304, 268х304, 180х305, 203х305, 204х305 210х305, и т.д. Поэтому для разных плат указаны примерные размеры, которые могут широко варьироваться.


Питание материнской платы зависит от типа разъема от блока питания, например 24+4, то есть два разъема, один на 24 вывода, второй на 4. Могут быть разъемы: 24+4,24+4+4, 24+8+4, 24+8+4+4 pin. На рисунке выше показан разъем, имеющий 20 гнезд для подключения материнской платы и на рисунке ниже дополнительный 4-штырьковый разъем. Таким образом на материнской плате и на том же рисунках имеется разъем типа 20+4.


Гнездо процессора указывает вид разъема, в который вставляется процессор, например, LGA 775. Число указывает число контактов разъема. Если у процессора имеется другое число разъемов, например, LGA 1155, то данная материнская плата не подходит под этот процессор. Материнские платы для серверов могут иметь от 1 до 4 таких разъемов. На домашних компьютерах присутствует один разъем.

Поддерживаемые процессоры. Как правило, в описании материнской платы указываются виды процессоров, которые можно установить на данную материнскую плату. Однако на сайтах компаний, продающих комплектующие, практически не указываются эти типы, так как их обычно много. Рекомендуется зайти на сайт производителя и просмотреть документацию на плату. Некоторую информацию можно найти далее в разделе о центральном процессоре.

Число слотов и их вид для оперативной памяти (как правило, от 2 до 4. Для серверов может быть до 16). В настоящее время материнская плата может поддерживать память вида: DDR , DDR 2 и DDR 3 (для мобильных устройств может быть SO DDR , для серверов DDR 2 FB -DIMM ). DDR имеет разъем с 184 штырями, DDR 2 с 240 штырями, DDR 3 с 240 штырями. Несмотря на одинаковое количество штырьков, в разъем для DDR 2 нельзя вставить DDR 3 и наоборот, так как они имеют разный ключ (то есть, выемка в планке расположена в разных местах, потому иной модуль вставить в разъем не получится). Но некоторые платы содержат слоты двух разных видов (DDR и DDR 2, DDR 2 и DDR 3). Если материнская плата поддерживает частоту работы оперативной памяти 800 Мгц, а память поддерживает 1066 Мгц, то будет использоваться меньшее значение (800 Мгц). Поэтому нужно смотреть какую частоту поддерживает материнская плата (от 133 до 2 600 мгц). Кроме того указывается максимальный объем оперативной памяти, который поддерживает плата (например, 4, 16, 32 Гигабайта). Также играет роль, поддерживается ли двухканальный, трехканальный, четырехканальный режим памяти , который увеличивает вдвое или более, производительность доступа к оперативной памяти. Чтобы получить выигрыш в производительности, то следует установить соответствующую память на все разъемы (одинакового объема и вида). Практически на всех современных платах имеется двухканальный доступ. Может быть указан параметр ЕСС , который увеличивает надежность работы компьютера, но в домашних компьютерах он не используется.

Частота системной шины . Более подробно об этом параметре рассказано в разделе о центральных процессорах. Если имеется шина HyperTransport или QuickPath , то частота не указывается (она больше 1 ггц).

Чипсет – набор микросхем на материнской плате, который выполняет роль связывающего элемента, которое обеспечивает прохождение сигнала по шинам к оперативной памяти, слотам расширения, центрального процессора, таймера и других устройств. В современных компьютерах он состоит из двух частей: северный мост и южный мост. Северный мост отвечает за связи по шине с центральным процессором с одной стороны и с южным мостом, оперативной памятью. В северный мост может быть интегрирована видеоподсистема. Южный мост являются связующим звеном между северным мостом и жестким диском, DVD -накопителем, картами расширения, USB и прочими. В него может быть встроена аудиосистема (АС 97 и HAD) . Как правило, они имеют свою марку, например, Intel GMA 4500, где первое слово (Intel ) название компании производителя. Основными производителями чипсетов являются Intel , NVideo , ATI , Via , SiS .

Наличие на материнской плате встроенной видеоподсистемы. На плате, в чипсет могут быть встроены некоторые подсистемы, например, видеосистема. В этом случае не нужна видеокарта. Если функционирует видеосистема, то она использует оперативную память , о чем указывается в BIOS . Там назначается максимальный объем, который обычно меньше, чем указанный. Видеосистема использует оперативную память для своих целей, поэтому желательно на компьютер установить больший размер этой памяти. Встроенная видеосистема позволяет комфортно работать с офисными программами, просмотром видео и большим количеством игр. При этом компьютер дешевле, чем в случае, когда видеосистема использует отдельную плату. Встроенная видео система должна поддерживать технологию DirectX . Как правило, современные системы поддерживают 10 версию, и соответственно более ранние версии. Однако начинают выпускаться игры с версией 11. Если поддерживается 10 версия, а требуется 11, то программа все равно будет работать, но фактура в игре будет более грубой. Для абсолютного большинства других программ (не игр), этот параметр не существенен.

Наличие на плате встроенной аудиосистемы . В этом случае не обязательно иметь аудиокарту. Для аудиосистемы указывается чипсет, который определяет возможности этой подсистемы. Как правило, он не является высокопродуктивным, но для офисных программ и несложных игр достаточен. Встречаются и высокопроизводительные видеоподсистемы. Если их возможности не удовлетворяют, то эти карты можно дополнительно установить. В этом случае через BIOS нужно отключить встроенные подсистемы.

Существует несколько видов встроенных аудиосистем:

AC ’97 – поддерживает 16ти битный звук с частотой дискретизации 48 кгц, объемный звук по стандарту 5.1 (то есть, пять каналов на колоники и один канал на сабвуфер);

HDA (High Definition Audio - звук высокого разрешения) поддерживает 32ти битный звук с частотой дискретизации до 192 кгц, объемный звук по стандартам 5.1 и 7.1;

DSP (Digital Signal Processor -цифровой сигнальный процессор) является более высококачественной системой, по сравнению с предыдущими, так как находится в отдельной микросхеме на материнской плате.

Слотов PCI указывает количество устанавливаемых разъемов PCI , в которые вставляются карты с подсистемами (например, аудио, видеозахвата, Eternet , модем и прочее).

Слотов PCI - E x 16 используется, как правило, для высокотребовательных систем, в основном, видеокарт. Если установлено несколько таких разъемов, то можно установить несколько видеокарт, которые будут работать совместно (режим SLI , CrossFire ).

Могут быть также установлены разъемы PCI -E x 1, PCI -E x 2, PCI -E x 4, PCI -E х8, PCI -E x 12, PCI -E х32 Скорость передачи данных у них в одну сторону версии 2.0: 4 Гбит/сек (PCI -E x 1), 8 Гбит/сек (PCI -E x 2), 16 Гбит/сек (PCI -E x 4), 32 Гбит/сек (PCI -E х8), 48 Гбит/сек (PCI -E x 12), 64 Гбит/сек (PCI -E х16), 128 Гбит/сек (PCI -E x 32). При передаче данных в обоих направлениях число передачи данных увеличивается вдвое.


Дисковые контроллеры указывает, какие разъемы для дисковых накопителей (внутренних жестких дисков и DVD накопителей) устанавливаются на материнской плате. Могут быть: IDE (устаревший разъем для внутренних жестких дисков), FDD (устаревший разъем для гибких дисков), SATA (современный разъем для внутренних жестких дисков и DVD -накопителей). Скорость передачи данных через интерфейс SATAII составляет 3 Гб/с.

Разъемы на задней панели указывает разъемы, которые находятся на материнской плате, но их разъемы выведены на заднюю панель. Как правило, имеются разъемы USB (обычно версии 2.0, но появляются и 3.0), видео (VGA или DMI ), PS /2 (для подключения мыши зеленого цвета и клавиатуры фиолетового цвета), Параллельный порт или LPT (устарел), Последовательный порт или COM (устарел), сетевой интерфейс Ethrnet для подключения к локальной сети (RJ -45), аудио разъемы, если имеется встроенная аудиосистема (разъем подключения наушников, микрофона, линейный вход), Wire Fire (применяется редко),. Может быть выход S /PDIF для подключения многоканальной акустической системы, разъем GAME /MIDI для подключения джойстиков и синтезатора. Более подробно о разъемах указано на предыдущей странице.

Наличие контроллера Bluetooth , которая позволяет работать с беспроводной клавиатурой, мышью, с сотовым телефоном и другими устройствами, которые поддерживают этот стандарт.

Поддержка беспроводной связи Wi - Fi .

Версию и возможности BIOS . Основные производители BIOS: Award, Phoenix, Ami. Возможность восстановления BIOS .

Обычно в комплект материнской платы входят: сама плата, диск с драйверами, кабели, планки с дополнительными разъемами и т.д.

Если центральный процессор использует напряжение меньше 5 в (в старых компьютерах), которое подается на плату, то на ней имеется специальный преобразователь VRM (Voltage Regulator Module), который вырабатывает нужное напряжение для устройств, подключаемых к плате. При этом напряжение можно изменить при помощи перемычек.

Во время развития компьютерной техники появилось достаточно много новых технологий, позволяющих повысить производительность компьютера. Укажем некоторые из них:

HyperStreaming (в переводе – «гиперпоток»), обеспечивает лучшую передачу данных между устройствами материнской платы;

CIA (CPU Intelligent Accelerator – «интеллектуальный разгон ЦП»), производит управление тактовой частотой процессора и системной шины в периоды, когда происходят изменения вычислительной нагрузки на процессор;

MIB (Memory Intelligent Booster - «интеллектуальное повышение пропускной способности памяти»), позволяет обходиться без большого количества буферов между центральным процессором и оперативной памяти при частоте шины в 800 Мгц;

DOT (Dynamic Overclocking Technology – «технология динамического разгона»), выполняет повышение тактовой частоты центрального процессора при возрастающих потоках данных и снижение частоты его работы во время уменьшения нагрузки, а также в такие периоды происходит управление работой охлаждающего вентилятора. Для исполнения этих функций на системной плате находится специальная микросхема CoreCell, контролирующая текущие характеристики системной платы и управляющая необходимыми компонентами через BIOS;

- HyperTransport двунаправленная компьютерная шина с малыми задержками. Работает на частотах от 200 Мгц до 3.2 Ггц (800Мгц, 1.4 Ггц, 2.6 Ггц, 3.2 Ггц). Шина сама определяет ширину шины, то есть, количество данных, передаваемых за один такт, которая может быть от 2 до 32 бит. Является самой быстрой среди всех других шин.

Модули памяти располагаются в легкодоступном месте, так что к ним легко подобраться. Кроме того, центральный процессор располагается ближе к блоку питания, что позволяет ему быть под потоком воздуха от вентилятора блока питания, то есть получать дополнительное охлаждение. Кроме того, улучшен режим энергопотребления, разработанный для режимов пониженного электропотребления, и имеет 20-штырьковый разъем для подключения к материнской плате. Провода имеют доступную длину, чтобы можно было подключить устройство, располагаемое в любых частях системного блока.

Рассмотрим еще один (схематический) вид материнской платы.


На рисунке схематически изображена материнская плата. Она имеет несколько отверстий для ее крепления к корпусу системного блока. Отметим, что не все отверстия могут использоваться для установки материнской платы. Это связано с тем, что отверстия делаются для разных видов системного блока.

До установки платы в системный блок на нее устанавливают центральный процессор и оперативную память, а также перемычки. Современные платы, как правило, имеют от двух до четырех разъемов для оперативной памяти. После установки платы в корпус, к ней подключают провода такие, как аудио разъемы и провода к кнопкам и индикаторам передней панели, провода к вентиляторам, а также провода питания от блока питания.

Затем вставляют платы расширения в разъемы PCI и видеоплату в разъем PCI -E (в старых – AGP, в более старых – PCI ). Далее подключаются кабели к накопителям для гибких и жестких дисков.

На материнской плате показана также аккумуляторная батарейка для поддержки BIOS. Довольно редко, но может возникнуть необходимость ее замены. Так, гарантийный срок ее работы составляет около трех лет, при условии, что компьютер не будет подключен к сети. Если за это время, время от времени подключать системный блок, то срок батарейки будет увеличен.

На материнской плате находятся разъемы, которые выходят на заднюю панель системного блока и содержат разъемы для подключения клавиатуры, мыши, шины USB, последовательного и параллельного порта и другие. Более подробно эти разъемы описаны далее.

Кроме указанных разъемов, на материнской плате могут быть и дополнительные. Например, если в плату интегрирована звуковая подсистема, то присутствует аудиоразъем для подключения к передней панели системного блока и дополнительный аудиовход, разъем ATAPI (белый). На плате могут находиться разного вида индикаторы, например, индикатор спящего режима, а если в материнскую плату интегрирована подсистема работы с сетью, то индикатор работы с сетью. Если интегрирована система SCSI, то индикатор SCSI. Также возможны разъемы USB и IEEE 1394а-2000, если они выводятся на переднюю панель.

В последних платах появился разъем для последовательных жестких дисков по стандарту SATA. Кроме того, может быть разъем для датчика вскрытия крышки системного блока и разъем для дополнительного вентилятора (третьего).

Дополнительно: разъем для питания, разъем для вентилятора регулировки напряжения, вентилятора оперативной памяти, дополнительный разъем для индикатора питания (их может быть два). Также возможны - разъем Wake on LAN, Разъем Wake on Ring.

В настоящее время применяется технология: мгновенная готовность ПК или STR (Suspend to RAM),. Это технология позволяет системе переходить в режим с пониженным энергопотреблением. При этом оперативная память продолжает работать, а большинство компонентов системы, в том числе и вентиляторов, выключается. «Просыпается» компьютер после получении сигнала из сети, модема, например, для считывания электронной почты, после чего снова переходит в спящее состояние.

Переключатели и перемычки

Переключатели (рисунок ниже) и перемычки (рисунок выше) на материнской плате служат для задания режимов работы платы. Перемычки часто также называют джамперами , они занимают меньше места на плате и дешевле, чем переключатели, кроме того, имеют более двух состояний, поэтому более распространены. К достоинствам переключателей можно отнести более простое их переключение. Основная тенденция построения материнских плат заключается в переложении возможности переключения режимов работы платы на программное обеспечение, поэтому на платах становится все меньше перемычек и существуют платы, где они совсем отсутствуют (называются свободные от перемычек ).

Как правило, на разных типах плат устанавливаются различные перемычки и переключатели. На платах для процессоров типа Pentium они определяют тип процессора, частоту системной шины, размер кэш-памяти, включения/выключения некоторых интерфейсов, например, мыши или джойстика и так далее. Однако все они имеют разное значение и местоположение. Поэтому при покупке компьютера или отдельно материнской платы необходимо получить соответствующее руководство. Если инструкция потеряна, то можно обратиться к специалисту, для чего нужно знать название платы.

Перемычки обычно устанавливаются на металлические штыри. Если перемычка замыкает два штыря, то она включена. Перемычки могут состоять из двух или трех штырьков. При размыкании перемычку не убирают, чтобы в дальнейшем ее не потерять, а надевают на один из штырей. Переключатель напоминает кнопку включения карманного фонарика. Внешний вид его показан на рисунке выше, где надпись On - обозначает включен, Off - выключен. На Dip переключателях могут быть надписи: On/off, Open/Close, 0/1. Цифры могут указывать номер переключателя. На рисунке номер один и четыре включены, остальные выключены. В силу того, что переключатели имеют маленький размер, обычно их переключают при помощи скрепок, иголкой или другими предметами. При установке не рекомендуется передвигать его ручкой, так как можно запачкать переключатель пастой. При работе с перемычками людям с плохим зрением лучше воспользоваться фонариком или светом сильной настольной лампы, чтобы подключить именно нужные разъемы. В силу их миниатюрности, можно воспользоваться пинцетом, так как иногда пальцами трудно это сделать из-за выступающих других элементов на материнской плате. При использовании перемычек не пытайтесь ставить их наугад, а посмотрите их значение в справочном руководстве к плате или проконсультируйтесь у специалиста.

Замена материнской платы

При замене материнской платы необходимо знать:

Размер материнской платы, который поддерживает системный блок. Можно приобрести плату с тем же размером, который был у старой платы;

Типы центральных процессоров, включая названия компаний, которые их выпускают. Например, плата может поддерживать Intel Pentium с частотой 200 Мгц и не поддерживать процессоры с той же тактовой частотой компании Cyrix;

Вид оперативной памяти, поддерживаемый платой, и ее максимальный размер;

Тип используемой BIOS и ее возможности. Имеет ли она дополнительные свойства (например, защиту от вирусов);

Возможность использования имеющегося процессора. Можно покупку разбить на части: вначале приобрести материнскую плату, затем процессор. Например, имеется процессор AMD с частотой 2,0 Ггц и нужно увеличить его производительность. Для начала можно приобрести материнскую плату, работающую с требуемыми частотами, например, 2,0 – 3,0 Ггц, и первое время использовать старый процессор. Соответственно следует узнать максимальную частоту процессора, которую поддерживает материнская плата;

Частоту системной шины, которая чем больше, тем лучше;

Какие платы расширения поддерживаются на материнской плате. Не только сами слоты, их тип и количество, но и расположение, так как некоторые слоты невозможно вставить в платы (при этом нужно учесть количество возможных мест, которые можно использовать на задней стороне системного блока). Слоты расширения также называют шиной расширения ;

Какие встроенные контроллеры имеются на материнской плате. Если на старой плате имелся встроенный контроллер SATA или IEEE 1394, а на новой нет, то его придется приобрести отдельно;

Какие видеокарты поддерживает материнская плата. В последнее время все большую популярность приобретают карты AGP.

Материнская плата многослойна, имеет до 10 и более слоев. Если плата гибкая, то при сгибании проводники могут порваться, поэтому ее желательно устанавливать жестко. Отметим, что для увеличения быстродействия не всегда обязательно менять плату с процессором. Часто более ощутимый дешевый результат может дать увеличение оперативной памяти (например, если она меньше 16 Мегабайт).

Снятие материнской платы . Проделайте следующие действия:

Выключите компьютер;

Снимите все провода на задней панели системного блока;

Снимите защитный кожух системного блока, предварительно вывернув винты;

Нарисуйте подключение проводов и плат к старой плате. Отсоедините провода, которые соединены с платой, в том числе платы расширения;

Снимите платы расширения. Карты при этом следует извлекать строго вертикально;

Для удаления материнской платы выверните винты, которые ее удерживают. Для снятия пластмассовых опор наденьте их на использованный стержень от шариковой ручки, чтобы прижать их лепестки. Некоторые платы требуют перед снятием ее сдвинуть. Не забудьте о статическом электричестве.

При работах с отверткой будьте внимательны и делайте так, чтобы она не соскользнула и не испортила хрупкие проводники на материнской плате. Извлекайте карту двумя руками, чтобы не было перекосов. Снимите те элементы, которые могут потребоваться для новой материнской платы. Как правило, это модули памяти.

Для того, чтобы материнская плата не соприкасалась с корпусом системного блока применяются распорки, вид которых показан на рисунке выше. Как их устанавливать показано на рисунке ниже.

Установка материнской платы . Для этого:

Прочитайте документацию на нее и установите необходимые перемычки и переключатели;

Установите оперативную память и процессор. Как это сделать, указано в описании данных устройств;

Вставьте пластмассовые опоры и поместите плату в корпус. Затем заверните винты. Не забудьте, что винты должны иметь диэлектрические шайбы. (Однако появляются новые платы, в которых к отверстию подходит провод заземления и изоляция в этом случае не нужна, а наоборот, вредна. Узнайте об этой проблеме у продавца при покупке материнской платы). При установке материнской платы нужно следить, чтобы она не имела контактов по бокам с металлическим корпусом. На материнской плате имеется много отверстий, не все из которых могут использоваться, так как они предназначены для различных видов корпусов. Однако точки крепления должны окружать слоты расширения со всех четырех сторон. В крепежные отверстия можно вставлять не только пластмассовые штыри, но и металлические винты, при этом для них около отверстия будет находиться обод для заземления или он будет окружен областью, где нет проводников. При покупке платы желательно узнать, как она крепится и какими винтами к корпусу. При установке следует пользоваться не очень длинными винтами, иначе могут привести к сбоям в работе. Так как шайбы трудно установить, на них можно капнуть каплю клея. Кроме того, нужно иметь в виду, что серебряные точки спайки на плате острые и ими можно пораниться. При установке материнской платы разъем для карт расширения должен быть у задней стенки системного блока;

Подключите провода и вставьте карты расширения. При их установке не прикладывайте очень большого усилия, может быть, в слот попали какие-либо предметы, осмотрите его. Материнская плата не должна сильно прогибаться при установке карт, возможно, имеет смысл подложить картон под обратную сторону платы, чтобы ее не испортить;

Закройте кожух на системном блоке или боковую панель и подключите провода, если они были отсоединены, к задней стороне блока;

При первом включении войдите в BIOS и проверьте параметры настройки. Скорее всего нужно будет воспользоваться режимом автоматического определения типа жесткого диска. Более подробно о программе BIOS смотри далее;

Включите компьютер и проверьте правильность его работы. Компьютер должен, прежде всего, загружаться с жесткого диска. Затем проверьте остальные устройства, такие, как звуковая плата, факс-модем и другие, запустив тестовую программу, например, Msd.

Если компьютер не работает, то отключите карту расширения, кроме видеокарты, оставив подключенной к задней стенке системного блока только кабели питания, клавиатуры и монитора, и снова включите компьютер. Если все нормально, то постепенно подключайте дополнительные устройства.

При неисправности компьютера обратите внимание на звуковые сигналы или сообщения на экране дисплея, которые указывают источник неисправности. По окончании работ желательно протестировать все системы компьютера при помощи специальных программ.

Материнская плата довольно хрупкая, если ее погнуть, то могут разорваться проводящие дорожки. При этом во время установки компьютер будет работать какое-то время нормально, затем при нагревании проводники нагреваются и будут происходить сбои. Это довольно трудно определяемая неисправность, поэтому операции по работе с материнской платой нужно проводить осторожно.

Если после включения компьютера, он не работает и нет звуковых сигналов , то нужно сделать следующее. Проверьте правильность подключения динамика, который установлен в системном блоке, а также подсоединение проводов от блока питания к материнской плате.

Затем проверьте работу блока питания. Слышен ли звук вентиляторов, накопителей жестких дисков, горит ли индикатор включенного электропитания. Если звук имеется и индикатор горит, то, скорее всего, блок питания работает. Если все же имеются сомнения в блоке питания, то для его проверки можно подключить другую материнскую плату.

Проверьте правильность установки перемычек, устанавливающие частоту системной шины и центрального процессора. Проверьте поддерживает ли материнская плата тот центральный процессор, который на ней установлен. Можно очистить память BIOS при помощи перемычек.

Проверьте правильность установки процессора, оперативной памяти, плат расширений и кабелей. Можно их отсоединить и снова установить. Отсоедините все устройства, без которых может работать компьютер, например, звуковую карту, модем, индикаторы.

Если компьютер продолжает не работать, то проверьте видеокарту, установив другую на ее место.

Если компьютер после включения не работает, но подает звуковые сигналы , то причиной является неработоспособность одного из устройств, в зависимости от устройства и вида BIOS. В этом случае попробуйте это устройство перемонтировать.

На некоторых платах может присутствовать индикатор ошибок. В этом случае просмотрите код ошибки, расшифровка которого указана в инструкции к материнской плате. Как правило, такого индикатора нет, поэтому ошибка определяется по звуковым сигналам, которые зависят от компании-производителя BIOS.

AWARD BIOS . 1 длинный, 2 коротких сигнала – неисправна видеоподсистема.

1 длинный, 3 коротких сигнала и другие сигналы – проверьте оперативную память, а затем материнскую плату.

Короткие сигналы – неисправность в оперативной памяти.

AMI BIOS . 1, 2 или 3 коротких сигнала – неисправна оперативная память.

5 – неисправность в процессоре или материнской плате.

4, 7 или 10 сигналов - неисправность в материнской плате.

6 сигналов – неисправна клавиатура.

8 сигналов – неисправен видеоадаптер.

9 сигналов - ошибки в микросхеме BIOS.

11 сигналов - ошибка кэш памяти.

1 короткий, 2 или 3 длинных – неисправность в видеоподсистеме.

1 длинный – все нормально.

Phoenix BIOS . 1-1-4 – ошибка в BIOS. Последовательности коротких сигналов 1-3-1,1-3-3,1-3-4,1-4-1,1-4-2, 2 и далее несколько коротких сигналов обычно свидетельствуют о неисправности памяти, либо контроллера памяти, который находится на материнской плате. 3-2-4 – неисправность клавиатуры. 3-3-4 – ошибка в видеопамяти. 3-4-1, 3-4-2 – неисправность монитора. Остальные последовательности сигналов обычно свидетельствуют о неисправности материнской платы.

Иногда при неисправностях вместо звуковых сигналов, коды ошибок с их коротким названием или без них выводятся на экран монитора. Более подробную информацию о такой ошибке можно узнать из инструкции к материнской плате. Если такая инструкция не сохранилась, то ее можно получить с сайта-производителя материнской платы.

Отметим также, что некоторые материнские платы при перегреве центрального процессора подают сигнал, по которому динамик, находящийся на системном блоке, издает непрерывный сигнал. В этом случае нужно выключить электропитание компьютера и проверить правильность теплоотвода процессора, в том числе работу вентилятора.

Батарейки

Иногда на экране может появиться надпись: Invalid Configuration Information (неверная информация о конфигурации) и вместе с ней: Hard Disk Failure (ошибка жесткого диска) или Invalid System Settings-Run Setup. Данное сообщение появляется при истощении батарейки на материнской плате. Необходимо ее заменить. На старых компьютерах использовались как обычные, так и аккумуляторные батарейки. На современных компьютерах используются только аккумуляторные батарейки.

Некоторые старые компьютеры (ХТ) не имели батареек, поэтому при включении компьютера в сеть нужно было устанавливать текущие дату и время. Потом появились батарейки, но ввиду их многообразия описать их довольно трудно. Батарейки могут быть пальчиковые (как в плеере или в фотоаппарате), аккумуляторные (как в часах), могут быть внешние (то есть в отдельном корпусе и подключаемые при помощи проводов), в виде микросхемы (прямоугольные, на которых нарисованы часы).

Если батарея снизила свою мощность на 20 %, то следует заменить ее на новую. Тестирование производится с помощью тестера для измерения напряжения постоянного тока. Некоторые батарейки хорошо подзаряжаются во время работы компьютера, это, например, никель-кадмиевые. Если установлены простые батарейки, то лучше заменить их после двух лет работы, так как каждый год они будут снижать свою мощность примерно на 10 %. Аккумуляторные батарейки могут работать в среднем 5-7 лет.

Некоторые старые платы помимо установленных батарей могут иметь специальный разъем для внешних батарей. Для их подключения нужно переключить специальные перемычки, которые часто находятся около разъема или батарейки. При этом батарейки на плате отключаются. Такая возможность особенно ценна, когда батарейка припаяна к плате. Внешнюю батарейку следует установить при помощи специальных креплений к корпусу системного блока или блоку питания, чтобы она не упала на плату.

Если компьютер довольно долго не подключался, то батарейка может потечь. При этом материнская плата может выйти из строя. Поэтому время от времени проверяйте батарейку. При малейших признаках того, что батарейка может потечь, немедленно ее поменяйте.

Снимая батарейку, запишите, как подключались +, -. После установки батарейки согласно полюсам наденьте защитную крышку системного блока. Затем подключите компьютер в сеть, войдите в программу BIOS, установите тип жесткого диска, возможно, использовав опцию автоматического определения типа жесткого диска и другие параметры. Запустите компьютер и установите текущую дату и время.

На современных материнских платах устанавливаются элемент питания в форме монеты (например, CR2032). Средний срок эксплуатации батареи, когда компьютер постоянно отключен от сети электроснабжения составляет около трех лет. Если компьютер подключен к сети, то напряжение, подаваемое из блока питания продлевает срок службы батареи. Допустимая погрешность системных часов составляет 13 минут в год при температуре 25 ºC.

Системная шина

Следующим основным устройством на материнской плате является системная шина, или просто шина, своего рода дорога, магистраль, по которой передаются данные. Чем она шире (то есть чем больше линий, по которым данные передаются), тем выше производительность компьютера. На­пример, у 486 она 32-разрядная, а у Pentium имеется 64 разряда, по которым передаются данные.

Следующей важной характеристикой является системная частота. Например, для системы Pentium она составляет 50, 60, 66, 100, 133, 200, 400, 433, 500, 533 Мгц. Это количество тактов в одну секунду, за которые происходит передача данных. Процессор с тактовой частотой 120 Мгц имеет системную шину с частотой 60 Мгц, а процессору 100 Мгц соответствует 66 Мгц системной шины. Если программа обрабатывает большое количество данных, то скорость выполнения процессором команд может быть не так существенна и на первое место выходит пропускная способность системной шины. Поэтому Pentium с тактовой частотой 100 Мгц на этих задачах может работать быстрее, чем Pentium 120. Тот же принцип относится и к современным компьютерам.

Современные компьютеры имеют частоты системной шины:

50 Мгц для Pentium 75;

60 Мгц для Pentium 60, 90, 120, 150, 180;

66 Мгц для Pentium 66, 133, 166, 200, Celeron 366 – 533, Celeron II 533-766;

100 Мгц для Celeron II 800-950, Celeron III 1 000, 1 100, Pentium III 550 Е, 600 Е, 650 Е, 700, 750, 800, 850,Pentium M, Intel Xeon (P6), Intel Xeon (NetBurst), AMD К6-2, AMD Athlon;

133 Мгц для Pentium III 533 ЕВ, 600 ЕВ, 667, 733, 800 В, 866, 933, 1 000, 1 130, 1 200 и выше, Pentium M, Pentium D, Intel Core, Intel Xeon (P6), Intel Xeon (NetBurst), AMD Athlon, AMD Athlon XP;

166 Мгц для Intel Core, Intel Xeon (NetBurst) , AMD Athlon XP;

200 Мгц для Pentium IV, Pentium D, Pentium 4EE, Intel Core 2, AMD Duron и AMD Athlon от 700 до 1 300, Intel Xeon (NetBurst) , AMD Athlon XP;

266 Мгц для Pentium 4EE, Intel Core 2, Intel Xeon (NetBurst), AMD Athlon с частотами от 1 000 до 3 000, Intel Xeon (Penryn);

333 Мгц для Intel Core 2, Intel Xeon (NetBurst) , Intel Xeon (Penryn);

400 Мгц для Intel Core 2, Intel Xeon (Penryn);

800 Мгц для AMD Athlon 64/FX/Opteron;

1000 Мгц для AMD Athlon 64/FX/Opteron;

1600 Мгц для

1800 Мгц для AMD K8, AMD K10, AMD Turion 64, X2/Phenom/Phenom II.

2000 Мгц для AMD K8, AMD K10, AMD Turion 64, X2/Phenom/Phenom II.

Развитие системной шины шло следующим образом: сначала системная шина передавала за один такт один бит, повышалась частота для увеличения пропускной способности, затем за один такт стало передаваться больше данных (несколько бит), сейчас идет тенденция увеличение тактовой частоты с увеличением числа бит за один такт.

Процессоры компании Intel i 3, i 5, i 7 первого и второго поколения, некоторые другие используют шины DMI и QPI , которые имеют пропускную способность 2-4 Гбит/сек и выше.

Шина HyperTransport для компании AMD (1600, 1800, 2000 МГц) позволяет передавать 32 бит данных за один такт, соответственно пропускная способность выше частоты в 32 раза. В настоящее время уже имеются центральные процессоры, которые работают на частоте системной шины в 3.2, 4.0 и 5.2 Мгц для Phenom II и FX .

Частота системной шины не равна пропускной способности, так как за один такт может быть передано несколько бит данных. Так, при частоте 66 Мгц может быть, пропускная способность 533 МБ/сек, при частоте 100Мгц может быть 800, 1600 или 3200 МБ/сек.

Отметим, что среднее повышение скорости работы Pentium 150 по сравнению с Pentium 120 увеличивает скорость работы не на 25% (150/120), а на 2%, в основном из-за того, что основным препятствием является системная шина и оба процессора часто будут находиться в состоянии ожидания. Конечно, в Pentium IV имеются уже другие частоты, но принципы остаются теми же.

Чипсет (Chipset)

Chipset - набор микросхем на материнской плате, определяющий ее архитектуру. Данный набор обеспечивает обмен данными CPU с периферийными устройствами. При всех других одинаковых параметрах производительность компьютера может отличаться в зависимости от типа чипсета до 30%. Chipset, выпущенный компанией Intel, имеет название Triton. Набор микросхем предназначен для управления работой каналов прямого доступа, прерываниями, таймерами, системой управления памятью и системной шиной, а также выполняет другие функции. В нем могут находиться контроллеры для работы внешних устройств. Визуально он представляет собой несколько микросхем, которые закреплены на плате. Однозначного сравнения разных архитектур материнских плат сделать нельзя, так как имеется достаточно много взаимозависимых характеристик. Кроме того, бывают модели, которые несовместимы с другими устройствами, например, высокоскоростными графическими платами или некоторыми операционными системами, отличными от ДОС. Однако, чем более гибкое конфигурирование можно произвести при помощи программ BIOS, тем лучше.

Микросхемы характеризуются следующими параметрами: типами поддерживаемых центральных процессоров, их тактовыми частотами; тактовой частотой системной шины; поддержкой многопроцессорности; максимальным размером RAM, устанавливаемым на материнской плате, количеством и разъемами для оперативной памяти, их типом, видом оперативной памяти; поддержкой шины IDE, например, Ultra IDE, в том числе шины SATA ; максимальной скоростью передачи данных по шине PCI (версия 2.0 или 2.1) для операций чтения и записи; поддержкой технологии Plug&Play; встроенной поддержкой контроля четности и исправления ошибок для оперативной памяти; количеством разъемов PCI и ISA; поддержкой AGP и его режимов AGPx4 и AGPx8, шины USB; режимами DMA или Ultra DMA и их количеством; диаграммой работы оперативной памяти, например, 5-1-1-1 при работе с разными видами видеопамяти (EDO, BEDO и другими); прочими параметрами.

В современных платах используется архитектура UMA, при которой видеоконтроллер размещает часть своих данных в оперативной памяти и может осуществлять обработку 2D/3D изображений, а Direct AGP позволяет видеопамяти взаимодействовать с оперативной памятью не через порт AGP, а через контроллер оперативной памяти, что ускоряет передачу данных в полтора раза. Имеются стандартные характеристики, то есть поддержка устройств 7 каналов контроллера DMA, контроллеры прерываний, таблицы декодирования сигналов управления BIOS, контроллер клавиатуры и другие. Чипсеты выпускаются ориентированными для решения разных задач, адаптированы к определенным видам оперативной памяти и поэтому могут иметь противоречивые требования. В продажу постоянно поступают новые виды материнских плат и их имеется большое число, поэтому указать конкретные характеристики достаточно сложно. По этому вопросу лучше проконсультироваться у специалиста.

Другие устройства материнской платы

Кварц предназначен для вырабатывания сигналов, по которым синхронизируется работа компью­тера. Фактически он работает как часы, но минимальный такт не секунда, а ее миллионные доли. Стандартные размеры ее были от 4,77 до 6,8 Мгц, достигали у первых компьютеров Pentium 60-66 и перешагнули 133 Мгц. Имеются следующие частоты: - частота системной шины, частоты работы процессора, частоты шин расширения (PCI, VLB, ISA), частоты работы других устройств, таких, как таймер, последовательный порт и др.

Кроме того, на платах имеются контроллеры (управляющие устройства) и разъемы для последовательных и параллельных каналов, а также кварцевый генератор для стабилизации частоты системной шины.

На плате может присутствовать индикатор. Если он выключен, то это означает, что электропитание компьютера выключено или он находится в спящем режиме. Когда индикатор горит ровным зеленым цветом, то это означает, что компьютер находится в рабочем режиме. Если индикатор мигает зеленым цветом, то происходит ожидание сообщения или компьютер находится в рабочем режиме.

Помимо обычных устройств, на материнской плате могут дополнительно устанавливаться микросхемы , такие, как видео или звуковые контроллеры и прочие устройства.

Другие устройства системного блока.

Помимо описанных выше устройств, в компьютере используется высокоомный динамик. Основная задача динамика состоит в выводе звуковых сигналов после включения компьютера, когда возникают неисправности. Существуют программы в Windows 3.х и Windows 95, которые позволяют выводить через динамик музыку или воспроизводить человеческую речь, однако качество ее оставляет желать лучшего, поэтому для этих целей лучше использовать звуковую плату.

Также на материнской плате находятся звуковой чип, чип ввода/вывода, чип BIOS, слоты для оперативной памяти DIMM и слоты расширения.

Чип ввода/вывода выполняет функцию обслуживания портов ввода/вывода.

BIOS (Basic Input/Output System) – базовая система ввода/вывода, включает в себя набор программ, благодаря которым операционная система и программы запущенные под управлением этой операционной системы могут взаимодействовать с устройствами, подключенными к компьютеру, а также со всеми внутренними компонентами.

IDE разъёмы используется для подключения накопителей.

AGP слот – для подключения видеоадаптера.

PCI слоты используются для подключения различных устройств, таких как звуковая карта, плата дополнительных портов, сетевая карта и др.

FDD разъём – для подключения флоппи-дисковода.

На старых материнских платах могут встретиться слоты расширения: ISA, EISA, MCA, VLB.

На современных материнских платах ставятся слоты PCI Express x16 (используется для подключения видеоадаптера); PCI x4, PCI x1 (применение аналогичное PCI).

Parallel ATA


Рисунок 2.1. Компоненты материнской платы (а)

Рисунок 2.2. Компоненты материнской платы (б)

Рисунок 2.3. Схема расположения компонентов материнской платы


Рисунок 2.4. Внешний вид материнской платы АТХ.

Рисунок 2.5. Внешний вид материнской платы ВТХ.

Порядок выполнения работы

  1. Изучить порядок установки процессора.
  2. Изучить расположение и назначение компонентов материнской платы.
  3. Схематически зарисовать компоненты материнской платы.

2. Отчет о работе согласно с порядку выполнения работы.

Контрольные вопросы

1. Перечислите основные этапы установки центрального процессора.

2. Что такое сокет?

3. Перечислите названия основных сокетов для платформы Intel, использующиеся на сегодняшний день.

4. Перечислите название основных сокетов для платформы AMD, использующиеся на сегодняшний день.



5. За взаимосвязь между какими устройствами и шинами отвечает северный мост материнской платы? Покажите его на материнской плате.

6. За взаимосвязь между какими устройствами и шинами отвечает южный мост материнской платы? Покажите его на материнской плате.

7. Для чего необходимы разъемы DIMM? Покажите их на материнской плате.

8. Что такое AGP, для каких устройств используется данный разъем на материнской плате? Покажите этот разъем.

9. Покажите на материнской плате разъемы шины PCI. Какие устройства устанавливаются в данную шину.


Лабораторная работа 3

ТЕСТИРОВАНИЕ И СРАВНИТЕЛЬНЫЙ АНАЛИЗ
КОМПЬЮТЕРНЫХ СИСТЕМ

Цель работы: освоить программу тестирования SiSoftware Sandra провести сравнительный анализ нескольких ПК.

Существует множество программ для тестирования компонентов ПК.

Классификация тестирующих программ:

1) Определение характеристик компонентов ПК.

А) Характеристики аппаратных компонентов.

Пример тестирующих программ:

SiSoftware Sandra;

Б) Определение системных ресурсов.

В) Проверка правильности работы устройств.

2) Анализ производительности.

А) Определение производительности Ц.П.

Пример тестирующих программ:

Все эти тесты «синтетические»

Б) Тестирование в реальных приложениях.

Пример тестирующих программ:

В) Тест графической подсистемы.

Пример тестирующих программ:

Г) Кодирование, декодирование видео.

Пример тестирующих программ:

Д) Архиваторы.

Программа CPU-Z предназначена для получения информации о вашем процессоре.

Рисунок 3.1. Основное окно параграммы тестирования CPU-Z

Так же в CPU-Z можно найти дополнительную информацию о кеш памяти, некоторую информацию о материнской плате, памяти.

Создание отчёта:

Открыть About; Выбрать в каком виде вы хотите получить отчёт:

Registers Dump – в виде текстового файла;

SiSoftware Sandra

Программа SiSoftware Sandra предназначена для получения подробной информации о персональном компьютере, его аппаратных и программных настройках.

В программе присутствуют тесты следующих типов:

· Информационные тесты

· Бенчмарки (тесты сравнительной производительности)

· Тесты программных настроек вычислительной системы

· Тесты системных ресурсов

Рабочее окно программы представлено в виде набора ярлыков, соответствующих тому или иному тесту. Для выполнения задания нам не потребуются все, а только отмеченные на рисунке:

Рис. 3.1. Основное окно параграммы тестирования SiSoftware Sandra

Щелкнув по одному из ярлыков, вы получите сообщение подождать, далее на экране отобразить информация выбранного модуля, например:

Рис. 3.2. Справочная информация по устройтву.

Проведите тесты всех выбранных ярлыков и внимательно изучите всю представленную информацию.

Особое внимание уделите бенчмаркинговым модулям. При их запуске необходимо нажать кнопку «Обновить» (отмечена красным) и подождать достаточно долгое время.

Сравните показатели вашей системы и нескольких эталонных (выберите другие эталонные системы из списков).

Данные модули не включаются в отчет в полном объеме, поэтому сделайте их скриншоты или перепишите данные вашей системы и эталонных в виде таблицы

Рис. 3.3. Окно модуля «Арифметический тест процессора»

Создание отчета

Рассмотрим процесс создания отчета.

1. В меню выберите «Файл – Мастер создания отчетов».

3. Выберите тип «Выбрать параметры и составить отчет». И нажмите кнопку «Далее».

4. Отметьте необходимые модули (см. выше). Бенчмарки можете не отмечать их лучше выполнить вручную (см. выше).

Рис. 3.4. Окно мастера создания отчетов (Выбор модулей для тестирования)

5. Для всех остальных окон выбора модулей нажмите кнопку «Сбросить все».

Рис. 3.5. Окно мастера создания отчетов
(Выбор места сохранения отчета)

7. Выставьте все параметры как показано на рисунке.

Рис. 3.6. Окно мастера создания отчетов
(Выбор формата сохранения данных отчета)

8. Введите имя файла для сохранения. Нажмите «ОК» и подождите несколько минут. После выполнения программы нажмите «Закрыть».

9. Полученный файл имеет очень большой размер, поэтому отредактируйте его (в «Блокноте» или другом текстовом редакторе), оставив только наиболее значимые данные об аппаратном устройстве компьютера.

Порядок выполнения работы

2. Создать отчет о вычислительной системе с помощью «мастера» программы. Отредактировать отчет, оставив только наиболее важную информацию.

3. Сделать образы экрана нескольких бенчмарков.

4. Собрать информацию о системных ресурсах ПК.

1. Тема и цель лабораторной работы.

2. Отчет о работе согласно порядку выполнения работы.

3. Выводы по работе о полученных навыках и умениях.

Контрольные вопросы

1. Перечислите основные модули программы SiSoftware Sandra.

2. Какие компоненты тестируются программой SiSoftware Sandra?

3. С помощью каких программ можно протестировать графическую подсистему компьютера?

4. Какие программы тестируют оперативную память компьютера?

5. Какой тип программ тестирует CPU компьютера?

6. Какие программы вы знаете для комплексного тестирования всего ПК?

Лабораторная работа4

ПОДКЛЮЧЕНИЕ НАКОПИТЕЛЕЙ

Цель работы: изучить особенности подключения накопителей – жестких дисков, накопителей CD ROM и накопителей на гибких магнитных дисках

Информация для выполнения работы

Накопитель на жестких магнитных дисках

Рис. 4.1. Внутренний вид жесткого диска.

Рис. 4.2. Внешний вид жесткого диска.

Рис. 4.3. Обратная сторона жесткого диска.

Рис. 4.4. Внутренний вид оптического накопителя CD-ROM, DVD-ROM.

У персонального компьютера имеется множество составляющих и компонентов. Одним из самых важных элементов, без которого просто невозможно представить себе работу данного устройства, является материнская плата. Схема материнской платы достаточно сложна. Сама по себе она включает в себя несколько составных частей. Что же в него входит?

Материнская плата: что это?

Материнской платой называют устройство, являющееся основной построения вычислительной системы в технике. Материнская плата монтируется внутри корпуса вместе с блоком питания и системой охлаждения. Для классификации данных элементов используются различные стандарты, которые определяют размеры данного устройства, метод его крепления, размещение портов ввода/вывода, разъемов для процессора и оперативной памяти, шин. В рамках данной статьи мы будем постепенно обрисовывать схему материнской платы. Начать стоит с основного.

Печатная плата

На печатной плате расположены сигнальные линии. Они нужны для того, чтобы соединять между собой все элементы. Если разместить сигнальные линии слишком быстро друг к другу, то могут возникать серьезные помехи. Чем больше длина линии, тем выше будет уровень нестабильности. По этой причине могут возникать сбои даже в работе очень серьезной вычислительной техники. Чтобы минимизировать данный эффект, сегодня делают многослойные печатные платы. Тем самым производители многократно увеличивают полезную площадь платы и расстояние между линиями. Чаще всего в современных устройствах используют шесть слоев.

Три из них являются сигнальными, один используется для заземления и два для питания. На печатных платах размещаются все элементы, которые способны превратить данное устройство в неотъемлемую часть персонального компьютера. Сюда входят порты и компоненты. По схеме подключения материнской платы можно судить о том, что можно будет присоединить в будущем. На современных устройствах имеется примерно полдесятка разъемов для различных устройств помимо тех, что мы будем рассматривать в рамках данной статьи. Сразу стоит отметить, что большинство разработчиков лояльно относятся к желанию пользователей усовершенствовать свою продукцию путем добавления новых составляющих, вроде модулей оперативной памяти.

Чипсет

Данное устройство также называют набором системной логики. Чипсетами называют микросхемы, которые предназначены для беспроблемного функционирования ОЗУ, центрального процессора, видеокарты, контроллеров периферийных устройств и других компонентов, которые подключаются к материнской плате. Именно благодаря данным элементам определяются основные параметры данного устройства. Как правило, современные наборы логики строятся на базе двух компонентов. Каждый из этих компонентов представляет собой отдельный чипсет. Соединены они при помощи высокоскоростной шины. Для схемы материнской платы существует такая тенденция, что постепенно они объединяются. В результате происходит разгрузка каналов связи с различными периферийными устройствами и дополнениями. По мере развития технологии интеграции схемы получаются более дешевыми и маленькими. Уменьшается также и уровень потребления энергии.

Северный мост

Данный компонент предназначен для контроля и направления данных, получаемых из четырех шин: системной, связанной с памятью, обменивающейся информацией с графическим адаптеров и связанной с южным мостом. Состоит данное устройство из ряда интерфейсов и контроллеров памяти. Вторую функцию можно считать устаревшей, поскольку такое устройство имеется во всех современных компьютерах. То же самое можно сказать и про интерфейс, который отвечает за графику.

Южный мост

Еще одним важным компонентом любой материнской платы является южный мост. В данной случае схема устройства будет значительно больше. В нее входят шины, которые отвечают за поддержку связи с северным мостом, шины, соединяющие мост с платами расширения, шины, отвечающие за обмен данными с другими вычислительными и периферийными устройствами, шины, занимающиеся связью с жесткими дисками, шины, обслуживающие обмен данными с медленными устройствами.

BIOS, базовая система ввода/вывода

BIOS представляет собой специальную программу, которая прошивается в ПЗУ (постоянном запоминающем устройстве). BIOS имеется на материнской плате и других элементах ЭВМ, типа видеокарт, контроллеров и т.п. BIOS имеет особую важность, поскольку именно она проверяет при включении компьютера большинство подключенных устройств, а именно, жесткие диски, процессор, память и так далее. БИОС при этом инициализирует контроллеры, которые имеются на материнской плате. Вместе с ними запускаются и некоторые устройства, происходит процесс установления их базовых параметров. Если все будет работать нормально, БИОС автоматически передаст управление операционной системе.

Генератор тактовой частоты

Данное устройство используется для формирования периодического сигнала высокой стабильности. Данный сигнал будет синхронизировать работу элементов компьютера. Состоит он из тактового генератора и кварцевого резонатора. Последний может создавать сигналы сам по себе. Однако данные сигналы могут не получаться с той частотой, которая необходима для функционирования шин, процессора и современной памяти. По этой причине используется тактовый генератор. Скорость, с которой выполняются вычисления, во многом будет зависеть от частоты импульсов. На любую операцию приходится определенное количество тактов. Чем их больше в секунду, тем выше производительность.

Данное утверждение верно только для тех устройств, которые имеют одинаковую микроархитектуру. Можно увеличить показатель тактовой частоты, тогда возрастет и производительность электронно-вычислительной машин. Здесь есть и свои недостатки. Так, например, может уменьшиться стабильность работы компонентов компьютера. По этой причине после выполнения данной операции, необходимо всегда проверять работоспособность компьютера. Еще одним недостатком является то, что из-за тяжелых условий работы могут повредиться различные элементы. Характер повреждений может быть нарастающим.

Другие элементы материнской платы

По схеме материнской платы можно понять, что перечисленные выше компоненты, это еще далеко не все. Что же еще может присутствовать на материнской плате? Как правило, на этом устройстве имеется большое количество конденсаторов. Их задача заключается в том, чтобы обеспечивать ровный поток напряжения. Необходимы они по той причине, что уровень потребления энергии может резко измениться. Происходит это при остановке или возобновлении работы. Конденсаторы используются для того, чтобы сгладить скачки напряжения. Благодаря этому можно повысить стабильность работы техники и увеличить срок службы многих компонентов, имеющихся в ЭВМ.

Устройство и назначение материнской платы

Материнская или системная плата – это многослойная печатная плата, являющаяся основой ЭВМ, определяющая ее архитектуру, производительность и осуществляющая связь между всеми подключенными к ней элементами и координацию их работы.

1. Введение.

Материнская плата – это один из важнейших элементов ЭВМ, определяющий ее облик и обеспечивающий взаимодействие всех подключаемых к материнской плате устройств.

На материнской плате размещаются все основные элементы ЭВМ, такие как:

Набор системной логики или чипсет – основной компонент материнской платы, определяющий какой тип процессора, тип ОЗУ, тип системной шины можно использовать;

Слот для установки процессора. Определяет, какой именно тип процессоров можно подсоединить к материнской плате. В процессорах могут использоваться различные интерфейсы системной шины (например, FSB, DMI, QPI и т.д.), какие то процессоры могут иметь встроенную графическую систему или контроллер памяти, может отличаться количество "ножек" и так далее. Соответственно для каждого типа процессора необходимо использовать свой слот для установки. Зачастую производители процессоров и материнских плат злоупотребляют этим, гонясь за дополнительной выгодой, и создают новые процессоры не совместимые с существующими типами слотов, даже если этого можно было избежать. В результате приходится при обновлении компьютера менять не только процессор, но и материнскую плату со всеми вытекающими из этого последствиями.

- центральный процессор – основное устройство ЭВМ, выполняющее математические, логические операции и операции управления всеми остальными элементами ЭВМ;

Контроллер ОЗУ (оперативно запоминающее устройство). Раньше контроллер ОЗУ встраивали в чипсет, но сейчас большинство процессоров имеют встроенный контроллер ОЗУ, что позволяет увеличить общую производительность и разгрузить чипсет.

ОЗУ – набор микросхем для временного хранения данных. В современных материнских платах имеется возможность подключения одновременно нескольких микросхем ОЗУ, обычно четырех или более.

ППЗУ (БИОС), содержащие программное обеспечение, осуществляющее тестирование основных компонентов ЭВМ и настройку материнской платы. И память CMOS хранящая настройки работы BIOS. Часто устанавливают несколько микросхем памяти CMOS для возможности быстрого восстановления работоспособности ЭВМ в экстренном случае, например, неудачной попытки разгона;

Аккумулятор или батарейка, питающая память CMOS;

Контроллеры каналов ввода-вывода: USB, COM, LPT, ATA, SATA, SCSI, FireWire, Ethernet и др. Какие именно каналы ввода-вывода будут поддерживаться, определяется типом используемой материнской платы. В случае необходимости, дополнительные контроллеры ввода-вывода можно устанавливать в виде плат расширения;

Кварцевый генератор, вырабатывающий сигналы, по которым синхронизируется работа всех элементов ЭВМ;

Таймеры;

Контроллер прерываний. Сигналы прерываний от различных устройств поступают не напрямую в процессор, а в контроллер прерываний, который устанавливает сигнал прерывания с соответствующим приоритетом в активное состояние;

Разъемы для установки плат расширения: видеокарт, звуковой карты и т.д.;

Регуляторы напряжения, преобразующие исходное напряжение в требуемое для питания компонентов установленных на материнской плате;

Средства мониторинга, измеряющие скорость вращения вентиляторов, температуру основных элементов ЭВМ, питающее напряжение и т.д.;

Звуковая карта. Практически все материнские платы содержат встроенные звуковые карты, позволяющие получить приличное качество звука. При необходимости можно установить дополнительную дискретную звуковую карту, обеспечивающую лучшее звучание, но в большинстве случаев это не требуется;

Встроенный динамик. Главным образом используется для диагностики работоспособности системы. Так по длительности и последовательности звуковых сигналов при включении ЭВМ можно определить большинство неисправностей аппаратуры;

Шины – проводники для обмена сигналами между компонентами ЭВМ.

2. Печатная плата.

Основу материнской платы составляет печатная плата. На печатной плате располагаются сигнальные линии, часто называемые сигнальными дорожками, соединяющими между собой все элементы материнской платы. Если сигнальные дорожки расположены слишком близко друг к другу, то передаваемые по ним сигналы будут создавать помехи друг для друга. Чем длиннее дорожка и выше скорость передачи данных по ней, тем больше она создает помех для соседних дорожек и тем больше она уязвима для таких помех.

В результате, могут возникать сбои в работе даже сверхнадежных и дорогих компонентов ЭВМ. Поэтому основная задача при производстве печатной платы так разместить сигнальные дорожки, чтобы минимизировать действие помех на передаваемые сигналы. Для этого печатную плату делают многослойной, многократно увеличивая полезную площадь печатной платы и расстояние между дорожками.

Обычно современные материнские платы имеют шесть слоев: три сигнальных слоя, слой заземления и две пластины питания.

Однако количество слоев питания и сигнальных слоев может варьироваться, в зависимости от особенностей материнских плат.

Разметка и длина дорожек крайне важна для нормальной работы всех компонентов ЭВМ, поэтому при выборе материнской платы надо особое внимание уделять качеству печатной платы и разводке дорожек. Особенно это важно, если вы собираетесь использовать компоненты ЭВМ с нестандартными настройками и параметрами работы. Например, разгонять процессор или память.

На печатной плате располагаются все компоненты материнской платы и разъемы для подключения плат расширения и периферийных устройств. Ниже на рисунке изображена структурная схема расположения компонентов на печатной плате.

Рассмотрим более подробно все компоненты материнской платы и начнем с главного компонента – чипсета.

3. Чипсет.

Чипсет или набор системной логики – это основной набор микросхем материнской платы, обеспечивающий совместное функционирование центрального процессора, ОЗУ, видеокарты, контроллеров периферийных устройств и других компонентов, подключаемых к материнской плате. Именно он определяет основные параметры материнской платы: тип поддерживаемого процессора, объем, канальность и тип ОЗУ, частоту и тип системной шины и шины памяти, наборы контроллеров периферийных устройств и так далее.

Как правило, современные наборы системной логики строятся на базе двух компонентов, представляющих собой отдельные чипсеты, связанные друг с другом высокоскоростной шиной.

Однако последнее время появилась тенденция объединения северного и южного моста в единый компонент, так как контроллер памяти все чаще встраивают непосредственно в процессор, тем самым разгружая северный мост, и появляются все более быстрые и быстрые каналы связи с периферийными устройствами и платами расширения. А также развивается технология производства интегральных схем, позволяющая делать их более миниатюрными, дешевыми и потребляющими меньше энергии.

Объединение северного и южного моста в один чипсет позволяет поднять производительность системы, за счет уменьшения времени взаимодействия с периферийными устройствами и внутренними компонентами, ранее подключаемыми к южному мосту, но значительно усложняет конструкцию чипсета, делает его более сложным для модернизации и несколько увеличивает стоимость материнской платы.

Но пока что большинство материнских плат делают на основе чипсета разделенного на два компонента. Называются эти компоненты Северный и Южный мост.

Названия Северный и Южный - исторические. Они означают расположение компонентов чипсета относительно шины PCI: Северный находится выше, а Южный - ниже. Почему мост? Это название дали чипсетам по выполняемым ими функциям: они служат для связи различных шин и интерфейсов.

Причины разделения чипсета на две части следующие:

1.Различия скоростных режимов работы.

Северный мост работает с самыми быстрыми и требующими большой пропускной способности шины компонентами. К числу таких компонентов относится видеокарта и память. Однако сегодня большинство процессоров имеют встроенный контроллер памяти, а многие и встроенную графическую систему, хотя и сильно уступающую дискретным видеокартам, но все же часто применяемую в бюджетных персональных компьютерах, ноутбуках и нетбуках. Поэтому, с каждым годом нагрузки на северный мост снижаются, что уменьшает необходимость разделения чипсета на две части.

2. Более частое обновление стандартов периферии, чем основных частей ЭВМ.

Стандарты шин связи с памятью, видеокартой и процессором изменяются гораздо реже, чем стандарты связи с платами расширения и периферийными устройствами. Что позволяет, в случае изменения интерфейса связи с периферийными устройствами или разработки нового канала связи, не изменять весь чипсет, а заменить только южный мост. К тому же северный мост работает с более быстрыми устройствами и устроен сложнее, чем южный мост, так как от его работы во многом зависит общая производительность системы. Поэтому его изменение - дорогая и сложная работа. Но, несмотря на это, наблюдается тенденция объединения северного и южного моста в одну интегральную схему.

3.1. Основные функции Северного моста.

Северный мост, как следует из его названия, выполняет функции контроля и направления потока данных из 4-х шин:

  1. Шины связи с процессором или системной шины.
  2. Шины связи с памятью.
  3. Шины связи с графическим адаптером.
  4. Шины связи с южным мостом.

В соответствии с выполняемыми функциями и устроен северный мост. Он состоит из интерфейса системной шины, интерфейса шины связи с южным мостом, контроллера памяти, интерфейса шины связи с графической картой.

На данный момент большинство процессоров имеют встроенный контроллер памяти, так что функцию контроллера памяти можно считать для северного моста устаревшей. И учитывая, что существует множество типов оперативной памяти, для описания памяти и технологии ее взаимодействия с процессором, выделим отдельную статью.

В бюджетных ЭВМ иногда в северный мост встраивают графическую систему. Однако на данный момент более распространенную практику имеет установка графической системы непосредственно в процессор, так что эту функцию северного моста тоже будем считать устаревшей.

Таким образом, основная задача чипсета - грамотно и быстро распределять все запросы от процессора, видеокарты и южного моста, расставлять приоритеты и создавать, если это необходимо, очередность. Причем он должен быть настолько сбалансирован, чтобы как можно сильнее сократить простои при попытке доступа компонентов ЭВМ к тем или иным ресурсам.

Рассмотрим более подробно существующие интерфейсы связи с процессором, графическим адаптером и южным мостом.

3.1.1. Интерфейсы связи с процессором.

На данный момент существуют следующие интерфейсы связи процессора с северным мостом: FSB, DMI, HyperTransport, QPI.

FSB (Front Site Bus) - системная шина, используемая для связи центрального процессора с северным мостом в 1990-х и 2000-х годах. FSB разработана компанией Intel и впервые использовалась в компьютерах на базе процессоров Pentium.

Частота работы шины FSB является одним из важнейших параметров работы ЭВМ и во многом определяет производительность всей системы. Обычно она - в несколько раз меньше частоты работы процессора.

Частоты, на которых работают центральный процессор и системная шина, имеют общую опорную частоту и в упрощенном виде рассчитываются, как Vп = Vo*k, где Vп – частота работы процессора, Vo-опорная частота, k – множитель. Обычно в современных системах опорная частота равняется частоте шины FSB.

Большинство материнских плат позволяют вручную увеличивать частоту системной шины или множитель, изменяя настройки в BIOS. В старых материнских платах подобные настройки изменялись с помощью перестановки перемычек. Увеличение частоты системной шины или множителя увеличивает производительность ЭВМ. Однако в большинстве современных процессоров средней ценовой категории множитель заблокирован, и единственный способ поднять производительность вычислительной системы – это увеличить частоту системной шины.

Частота системной шины FSB постепенно возрастала с 50 МГц, для процессоров класса Intel Pentium и AMD K5 в начале 1990-х годов, до 400 МГц, для процессоров класса Xeon и Core 2 в конце 2000-х. При этом пропусканная способность возрастала с 400 Мбит/с до 12800 Мбит/с.

Шина FSB использовалась в процессорах типа Атом, Celeron, Pentium, Core 2, и Xeon вплоть до 2008 года. На данный момент эта шина вытеснена системными шинами DMI, QPI и Hyper Transport.

HyperTransport – универсальная высокоскоростная шина типа точка-точка с низкой латентностью, используемая для связи процессора с северным мостом. Шина HyperTransport - двунаправленная, то есть для обмена в каждую сторону выделена своя линия связи. К тому же она работает по технологии DDR (Double Data Rate), передавая данные, как по фронту, так и по спаду тактового импульса.

Технология разработана консорциумом HyperTransport Technology во главе с компанией AMD. Стоит отметить, что стандарт HyperTransport - открытый, что позволяет использовать его в своих устройствах различным компаниям.

Первая версия HyperTransport была представлена в 2001 году, и позволяла производить обмен со скоростью 800 МТр/с (800 Мега Транзакций в секунду или 838860800 обменов в секунду) с максимальной пропускной способностью - 12.8 ГБайт/с. Но уже в 2004 году была выпущена новая модификация шины HyperTransport (v.2.0), обеспечивающая 1.4 ГТр/с с максимальной пропускной способностью - 22.4 ГБайт/с, что почти в 14 раз превышало возможности шины FSB.

18 августа 2008 года была выпущена модификация 3.1, работающая со скоростью 3.2 ГТр/с, с пропускной способностью - 51.6 Гбайт/с. На данный момент это - самая быстрая версия шины HyperTransport.

Технология HyperTransport - очень гибкая, и позволяет варьировать, как частоты шины, так и ее разрядность. Это позволяет использовать ее не только для связи процессора с северным мостом и ОЗУ, но и в медленных устройствах. При этом возможность уменьшения разрядности и частоты ведет к экономии энергии.

Минимальная тактовая частота шины – 200 МГц, при этом данных будут передоваться со скоростью - 400 МТр/с, из-за технологии DDR, а минимальная разрядность - 2 бита. При минимальных параметрах максимальная пропускная способность составит 100 Мбайт/с. Все следующие поддерживаемые частоты и разрядности - кратны минимальной тактовой частоте и разрядности вплоть до скорости - 3.2 ГТр/с, и разрядности - 32 бита, для ревизии HyperTransport v 3.1.

DMI (Direct Media Interface) – последовательная шина типа точка-точка, используемая для связи процессора с чипсетом и для связи южного моста чипсета с северным. Разработана компанией Intel в 2004 году.

Для связи процессора с чипсетом обычно используется 4 канала DMI, обеспечивающих максимальную пропускную способность до 10 Гбайт/с, для ревизии DMI 1.0, и 20 Гбайт/с, для ревизии DMI 2.0, представленной в 2011 году. В бюджетных мобильных системах может использоваться шина с двумя каналами DMI, что в два раза снижает пропускную способность по сравнению с 4-х канальным вариантом.

Часто в процессоры, использующие связь с чипсетом по шине DMI, встраивают, наряду с контроллером памяти, контроллер шины PCI Express, обеспечивающий взаимодействие с видеокартой. В этом случае надобность в северном мосте отпадает, и чипсет выполняет только функции взаимодействия с платами расширения и периферийными устройствами. При такой архитектуре материнской платы не требуется высокоскоростного канала для взаимодействия с процессором, и пропускной способности шины DMI хватает с избытком.

QPI (QuickPath Interconnect) – последовательная шина типа точка-точка, используемая для связи процессоров между собой и с чипсетом. Представлена компанией Intel в 2008 году и используется в HiEnd процессорах типа Xeon, Itanium и Core i7.

Шина QPI - двунаправленная, то есть для обмена в каждую сторону предусмотрен свой канал, каждый из которых состоит из 20 линий связи. Следовательно, каждый канал – 20-разрядный, из которых на полезную нагрузку приходится только 16 разрядов. Работает шина QPI со скоростью - 4.8 и 6.4 ГТр/с, при этом максимальная пропускная способность составляет 19,2 и 25,6 ГБайт/с соответственно.

Мы с вами кратко рассмотрели основные интерфейсы связи процессора с чипсетом. Далее рассмотрим интерфейсы связи Северного моста с графическим адаптером.

3.1.2. Интерфейсы связи с графическим адаптером.

Вначале для связи с графическим процессором использовали общую шину ICA, VLB, а затем PCI, но очень быстро пропускной способности этих шин перестало хватать для работы с графикой, тем более после распространения трехмерной графики, требующей огромных мощностей для расчета и высокой пропускной способности шины для передачи текстур и параметров изображения.

На замену общим шинам пришла специализированная шина AGP, оптимизированная для работы с графическим контроллером.

AGP (Accelerated Graphics Port) – специализированная 32-разрядная шина для работы с графическим адаптером, разработанная в 1997 году компанией Intel.

Шина AGP работала на тактовой частоте - 66 МГц, и поддерживала два режима работы: с памятью DMA (Direct Memory Access) и памятью DME (Direct in Memory Execute).

В режиме DMA основной памятью считалась память, встроенная в видеоадаптер, а в режиме DME – память видеокарты, которые вместе с основной памятью находились в едином адресном пространстве, и видеоадаптер мог обращаться, как к встроенной памяти, так и к основной памяти компьютера.

Наличие режима DME позволяло уменьшить объем встраиваемой в видеоадаптер памяти и тем самым уменьшить его стоимость. Режим работы с памятью DME получил название AGP-текстурирование.

Однако очень скоро пропускной способности шины AGP перестало хватать для работы в режиме DME, и производители стали увеличивать объемы встраиваемой памяти. Вскоре и увеличение встраиваемой памяти перестало помогать и пропускной способности шины AGP стало категорически нехватать.

Первая версия шины AGP – AGP 1x, работала на тактовой частоте – 66 МГц, и имела максимальную скорость передачи данных – 266 Мбайт/с, что было недостаточно для полноценной работы в режиме DME и не превышало скорость предшественницы – шины PCI (PCI 2.1 – 266 Мбайт/с). Поэтому практически сразу же шина была доработана и введен режим передачи данных по фронту и спаду тактового импульса, что при той же тактовой частоте в 66 МГц позволило получить пропускную способность в 533 Мбайт/с. Этот режим назывался AGP 2x.

Первая представленная на рынке ревизия AGP 1.0 поддерживала режимы работы AGP 1x и AGP 2x.

В 1998 году была представлена новая ревизия шины – AGP 2.0, поддерживающая режим работы AGP 4x, в котором за один такт передавалось уже 4 блока данных, в результате, пропускная способность достигла 1 ГБайт/с.

При этом опорная тактовая частота шины не изменилась и осталась равной 66 МГц, а для возможности передачи четырех блоков данных за один такт был введен дополнительный сигнал, запускающийся синхронно с опорной тактовой частотой, но с частотой – 133 МГц. Данные передавались по фронту и спаду тактового импульса дополнительного сигнала.

При этом питающее напряжение было снижено с 3.3 В до 1.5 В, в результате, видеокарты, выпущенные только для ревизии AGP 1.0, были несовместимы с видеокартами AGP 2.0 и следующих ревизий шины AGP.

В 2002 году вышла ревизия 3.0 шины AGP. Опорная частота шины по прежнему осталась неизменной, однако дополнительный тактовый импульс, запускающийся синхронно с опорной частотой, составлял уже 266 МГц. При этом за 1 такт опорной частоты передавалось уже 8 блоков, а максимальная скорость составила 2.1 Гбайт/с.

Но, несмотря на все улучшения шины AGP, видеоадаптеры развивались быстрее и требовали более производительной шины. Так на смену шине AGP пришла шина PCI express.

PCI express – последовательная двунаправленная шина типа точка-точка, разработанная в 2002 некоммерческой группой PCI-SIG, в состав которой входили такие кампании, как Intel, Microsoft, IBM, AMD, Sun Microsystems и другие.

Основная задача, стоящая перед шиной PCI express, – это замена графической шины AGP и параллельной универсальной шины PCI.

Ревизия шины PCI express 1.0 работает на тактовой частоте 2.5 ГГц, при этом пропускная суммарная способность одного канала составляет 400 Мбайт/с, так как на каждые переданные 8 бит данных приходится 2 служебных бита и шина двунаправленная, то есть обмен в обе стороны идет одновременно. В шине обычно используется несколько каналов: 1, 2, 4, 8, 16 или 32, в зависимости от требуемой пропускной способности. Таким образом, шины на базе PCI express в общем случае представляют собой набор самостоятельных последовательных каналов передачи данных.

Так при использовании шины PCI express для связи с видеокартами обычно используется 16-ти канальная шина, а для связи с платами расширения – одноканальная шина.

Теоретическая максимальная суммарная пропускная способность 32-х канальной шины составляет 12.8 Гбайт/с. При этом, в отличие от шины PCI, делившей пропускную способность между всеми подключенными устройствами, шина PCI express построена по принципу топологии типа «звезда» и каждому подключаемому устройству в единоличное владение отдается вся пропускная способность шины.

В ревизии PCI express 2.0, представленной 15 января 2007 года, пропускная способность шины была увеличена в 2 раза. Для одного канала шины суммарная пропускная способность составила 800 Мбайт/с, а для 32-х канальной шины – 25.6 Гбайт/с.

В ревизии PCI express 3.0, представленной в ноябре 2010 года, пропускную способность шины еще в 2 раза увеличили, причем максимальное количество транзакций увеличилось с 5 до 8 млрд, а максимальная пропускная способность увеличилась в 2 раза, благодаря изменению принципа кодирования информации, при котором на каждые 129 бит данных приходится всего 2 служебных бита, что в 13 раз меньше, чем в ревизиях 1.0 и 2.0. Таким образом, для одного канала шины суммарная пропускная способность стала 1.6 Гбайт/с, а для 32-х канальной шины – 51.2 Гбайт/с.

Однако PCI express 3.0 только выходит на рынок и первые материнские платы с поддержкой этой шины начали появляться в конце 2011 года, а массовый выпуск устройств с поддержкой шины PCI express 3.0 запланирован на 2012 год.

Стоит отметить, что на данный момент пропускной способности PCI express 2.0 вполне хватает для нормального функционирования видеоадаптеров и переход на PCI express 3.0 не даст существенного прироста производительности в связке процессор – видеокарта. Но, как говорится, поживем – увидим.

В ближайшем будущем планируется выпуск ревизии PCI express 4.0, в котором скорость будет увеличена еще в 2 раза.

В последнее время наметилась тенденция встраивания интерфейса PCI express непосредственно в процессор. Обычно в таких процессорах также встроен контроллер памяти. В результате, надобность в северном мосте отпадает, и чепсет строят на основе одной интегральной схемы, основная задача которой – обеспечение взаимодействия с платами расширения и периферийными устройствами.

На этом закончим обзор интерфейсов связи северного моста с видео адаптером и перейдем к обзору интерфейсов связи северного моста с южным.

3.1.3. Интерфейсы связи с южным мостом.

Довольно долгое время для связи северного моста с южным использовалась шина PCI.

PCI (Peripheral component interconnect) – шина для подключения плат расширения к материнской плате, разработанная в 1992 году компанией Intel. Также долгое время использовалась для связи северного моста с южным. Однако по мере повышения производительности плат расширения ее пропускной способности стало не хватать. Она была вытеснена более производительными шинами вначале из задач связи северного и южного моста, а в последние годы и для связи с платами расширения стали использовать более быструю шину – PCI express.

Основные технические характеристики шины PCI, следующие:

Ревизия 1.0 2.0 2.1 2.2 2.3
Дата релиза 1992 г. 1993 г. 1995 г. 1998 г. 2002 г.
Разрядность 32 32 32/64 32/64 32/64
Частота 33 МГц 33 МГц 33/66 МГц 33/66 МГц 33/66 МГц
Пропускная способность 132 МБайт/с 132 МБайт/с 132/264/528 МБайт/с 132/264/528 МБайт/с 132/264/528 МБайт/с
Сигнальное напряжение 5 В 5 В 5/3.3 В 5/3.3 В 5/3.3 В
Горячая замена нет нет нет есть есть

Существуют и другие ревизии шин PCI, например, для использования в ноутбуках и других портативных устройствах, или переходные варианты между основными ревизиями, но так как на данный момент интерфейс PCI практически вытеснен более скоростными шинами, то не буду подробно описывать характеристики всех ревизий.

При использовании шины для связи северного и южного моста структурная схема материнской платы будет выглядеть следующим образом:

Как видно из рисунка, северный и южный мост подключались к шине PCI наравне с платами расширения. Припускная способность шины делилась между всеми подключенными к ней устройствами, а, следовательно, заявленная пиковая пропускная способность уменьшалась не только передаваемой служебной информацией, но и конкурирующими устройствами, подключенными к шине. В результате, со временем пропускной способности шины стало нахватать, и для связи между северным и южным мостом стали использовать такие шины, как: hub link, DMI, HyperTransport, а шина PCI еще ненадолго осталась в качестве связи с платами расширения.

Первой на замену PCI пришла шина hub link.

Шина hublink – 8-битная шина типа точка-точка, разработанная компанией Intel. Шина работает на частоте – 66 МГц, и передает 4 байта за такт, что позволяет получить максимальную пропускную способность – 266 Мбайт/сек.

Ввод шины hublink изменил архитектуру материнской платы и разгрузил шину PCI. Шина PCI стала использоваться только для связи с периферийными устройствами и платами расширения, а шина hublink использовалась только для связи с северным мостом.

Пропускная способность шины hublink была сравнима с пропускной способностью шины PCI, но из-за того, что ей не приходилось делить канал с другими устройствами, а шина PCI разгружалась, то пропускной способности было вполне достаточно. Но вычислительная техника не стоит на месте, и шина hublink на данный момент практически не используется, из-за недостаточного быстродействия. Она была вытеснена такими шинами, как DMI и HyperTransport.

Краткое описание шины DMI и HyperTransport приводилось в разделе , поэтому повторяться не буду.

Были и другие интерфейсы для связи северного моста с южным, но большинство из них уже безнадежно устарели или редко используются, поэтому мы не будем на них заострять внимание. На этом закончим обзор основных функций и устройства северного моста и перейдем к южному мосту.

3.2. Основные функции Южного моста.

Южный мост отвечает за организацию взаимодействия с медленными компонентами ЭВМ: платами расширения, периферийными устройствами, устройствами ввода-вывода, каналами межмашинного обмена и так далее.

То есть, Южный мост ретранслирует данные и запросы от подключенных к нему устройств в северный мост, который передает их в процессор или ОЗУ, и принимает от северного моста команды процессора и данные из ОЗУ, и ретранслирует их в подключенные к нему устройства.

В состав южного моста входят:

Контроллер шины связи с северным мостом (PCI, hublink, DMI, HyperTransport и т.д.);

Контроллер шины связи с платами расширения (PCI, PCIe и т.д.);

Контроллер линий связи с периферийными устройствами и другими ЭВМ (USB, FireWire, Ethernet и т.д.);

Контроллер шины связи с жесткими дисками (ATA, SATA, SCSI и т.д.);

Контроллер шины связи с медленными устройствами (шины ISA, LPC, SPI и т.д.).

Рассмотрим более подробно интерфейсы связи, используемые южным мостом, и встроенные в него контроллеры периферийных устройств.

Интерфейсы связи северного моста с южным мы уже рассматривали. Поэтому сразу перейдем к интерфейсам связи с платами расширения.

3.2.1. Интерфейсы связи с платами расширения.

На данный момент основными интерфейсами для обмена с платами расширения являются PCI и PCIexpress. Однако интерфейс PCI активно вытесняется, и в ближайшие несколько лет практически уйдет историю, и будет использоваться только в некоторых специализированных ЭВМ.

Описание и краткие характеристики интерфейсов PCI и PCIexpress я уже приводил в этой статье, так что повторяться не буду. Перейдем сразу к рассмотрению интерфейсов связи с периферийными устройствами, устройствами ввода-вывода и другими ЭВМ.

3.2.2. Интерфейсы связи с периферийными устройствами, устройствами ввода - вывода и другими ЭВМ.

Существует большое разнообразие интерфейсов для связи с периферийными устройствами и другими ЭВМ, наиболее распространенные из них встраиваются в материнскую плату, но также можно добавлять любой из интерфейсов с помощью плат расширения, подключаемых к материнской плате через шину PCI или PCIexpress.

Приведу краткое описание и характеристики наиболее популярных интерфейсов.

USB (Universal Serial Bus) – универсальный последовательный канал передачи данных для подключения к ЭВМ среднескоростных и низкоскоростных периферийных устройств.

Шина строго ориентирована и состоит из контроллера канала и подключаемых к нему нескольких оконечных устройств. Обычно контроллеры канала USB встроены в южный мост материнской платы. В современных материнских платах могут размещаться до 12 контроллеров канала USB с двумя портами каждый.

Соединение между собой двух контроллеров канала или двух оконечных устройств невозможно, поэтому напрямую соединить два компьютера или два периферийных устройства между собой по USB-каналу нельзя.

Однако для связи двух контроллеров канала между собой можно использовать дополнительные устройства. Например, эмулятор Ethernet адаптера. Два компьютера подключаются к нему по USB каналу, и оба видят оконечное устройство. Ethernet адаптер ретранслирует данные, получаемые от одного компьютера к другому, эмулируя сетевой протокол Ethernet. Однако при этом необходимо устанавливать специфические драйвера эмулятора Ethernet адаптера на каждый подключаемый компьютер.

Интерфейс USB имеет встроенные линии питания, благодаря чему позволяет использовать устройства без собственного источника питания или одновременно с обменом данными подзаряжать аккумуляторы оконечных устройств, например телефонов.

Однако, если между контроллером канала и оконечным устройством используется размножитель (USB-hub), то он должен обладать дополнительным внешним питанием, чтобы обеспечить все подключаемые к нему устройства питанием, требуемым по стандарту интерфейса USB. Если использовать USB-hub без дополнительного источника питания, то, при подключении нескольких устройств без собственных источников питания, они, скорее всего, работать не будут.

USB поддерживает «горячее» подключение оконечных устройств. Это возможно, из-за более длинного заземляющего контакта, чем сигнальные контакты. Поэтому, при подключении оконечного устройства, вначале замыкаются контакты заземления, и разность потенциала компьютера и оконечного устройства выравнивается. Следовательно, дальнейшее соединение сигнальных проводников не приводит к скачку напряжения.

На данный момент существует три основные ревизии интерфейса USB (1.0, 2.0 и 3.0). Причем они совместимы снизу-вверх, то есть устройства, предназначенные для ревизии 1.0, будут работать с интерфейсом ревизии 2.0, соответственно, устройства, предназначенные для USB 2.0, будут работать с USB 3.0, однако устройства для USB 3.0, скорее всего не будут работать с интерфейсом USB 2.0.

Рассмотрим основные характеристики интерфейса, в зависимости от ревизии.

USB 1.0 – первая версия интерфейса USB, выпущенная в ноябре 1995 года. В 1998 году ревизия была доработана, устранены ошибки и недочеты. Полученная ревизия USB 1.1 первой получила массовое распространение.

Технические характеристики ревизий 1.0 и 1.1 следующие:

Скорость передачи данных – до 12 Мбит/с (режим Full-Speed) или 1,5 Мбит/с (режим Low-Speed);

Максимальная длина кабеля – 5 метров, для режима Low-Speed, и 3 метра, для режима Full-Speed;

USB 2.0 – ревизия, вышедшая в апреле 2000 года. Основное отличие от предыдущей версии – повышение максимальной скорости передачи данных до 480 Мбит/с. На практике, из-за больших задержек между запросом на передачу данных и началом передачи, скорости в 480 Мбит/с достичь не удается.

Технические характеристики ревизии 2.0 следующие:

Скорость передачи данных – до 480 Мбит/с (Hi-speed), до 12 Мбит/с (режим Full-Speed) или до 1,5 Мбит/с (режим Low-Speed);

Синхронная передача данных (по запросу);

Полудуплексный обмен (одновременно передача возможна только в одном направлении);

Максимальная длина кабеля – 5 метров;

Максимальное количество подключённых устройств к одному контроллеру (включая размножители) – 127;

Возможно подключение устройств, работающих в режимах с различной пропускной способностью, к одному контроллеру USB;

Напряжение питания для периферийных устройств – 5 В;

Максимальная сила тока – 500 мА;

Кабель состоит из четырех линий связи (две линии – для приема и передачи данных, и две линии – для питания периферийных устройств) и заземляющей оплетки.

USB 3.0 – ревизия, вышедшая в ноябре 2008 года. В новой ревизии на порядок была увеличена скорость, до 4800 Мбит/с, и почти в два раза – сила тока, до 900 мА. При этом сильно изменился внешний вид разъемов и кабелей, но совместимость снизу-вверх осталась. Т.е. устройства, работающие с USB 2.0, смогут подключаться к разъему 3.0, и будут работать.

Технические характеристики ревизии 3.0 следующие:

Скорость передачи данных – до 4800 Мбит/с (режим SuperSpeed), до 480 Мбит/с (режим Hi-speed), до 12 Мбит/с (режим Full-Speed) или до 1,5 Мбит/с (режим Low-Speed);

Двухшинная архитектура (шина Low-Speed/Full-Speed/High-Speed и отдельно шина SuperSpeed);

Асинхронная передача данных;

Дуплексный обмен в режиме SuperSpeed (одновременно возможна передача и прием данных) и симплексный в остальных режимах.

Максимальная длина кабеля – 3 метра;

Максимальное количество подключённых устройств к одному контроллеру (включая размножители) – 127;

Напряжение питания для периферийных устройств – 5 В;

Максимальная сила тока – 900 мА;

Улучшенная система управления питанием, позволяющая экономить энергию при бездействии оконечных устройств;

Кабель состоит из восьми линий связи. Четыре линии связи такие же, как и в USB 2.0. Дополнительные две линии связи – для приема данных, и две – для передачи в режиме SuperSpeed, и две –заземляющие оплетки: одна – для кабелей передачи данных в режиме Low-Speed/Full-Speed/High-Speed, и одна – для кабелей, используемых в режиме SuperSpeed.

IEEE 1394 (Institute of Electrical and Electronic Engineers) – стандарт последовательной высокоскоростной шины, принятый в 1995 году. Различные компании называют шины, разработанные по этому стандарту, по-разному. У Apple – FireWire, у Sony – i.LINK, у Yamaha – mLAN, у Texas Instruments – Lynx, у Creative – SB1394, и так далее. Из-за этого часто возникает путаница, но, несмотря на разные названия, это одна и та же шина, работающая по одному стандарту.

Эта шина предназначена для подключения высокоскоростных периферийных устройств, таких как внешние жесткие диски, цифровые видеокамеры, музыкальные синтезаторы и так далее.

Основные технические характеристики шины следующие:

Максимальная скорость передачи данных изменяется от 400 Мбит/с, у ревизии IEEE 1394, до 3.2 Гбит/с, у ревизии IEEE 1394b;

Максимальная длина связи между двумя устройствами изменяется от 4.5 метров, у ревизии IEEE 1394, до 100 метров, у ревизии IEEE 1394b и старше;

Максимальное количеств устройств, последовательно подключаемых к одному контроллеру, – 64, в том числе и IEEE-концентраторы. При этом все подключаемые устройства делят между собой пропускную способность шины. К каждому IEEE-концентратору можно подключить еще 16 устройств. Вместо подключения устройства можно подключить шинную перемычку, через которую можно будет подключить еще 63 устройства. Всего можно подключить до 1023 шинных перемычек, что позволит организовать сеть из 64 449 устройств. Больше устройств подключить нельзя, так как в стандарте IEEE 1394 каждое устройство имеет 16-разрядный адрес;

Возможность объединения в сеть нескольких компьютеров;

Горячее подключение и отключение устройств;

Возможность использования устройств, питающихся от шины и не имеющих собственного источника питания. При этом максимальная сила тока – до 1.5 Ампер, а напряжение – от 8 до 40 Вольт.

Ethernet – стандарт построения компьютерных сетей на базе технологии пакетной передачи данных, разработанный в 1973 году Робертом Метклафом из корпорации Xerox PARC.

Стандарт определяет виды электрических сигналов и правила проводных соединений, описывает форматы кадров и протоколы передачи данных.

Существуют десятки разных ревизий стандарта, но наиболее распространенными на сегодняшний день является группа стандартов: Fast Ethernet и Gigabit Ethernet.

Fast Ethernet обеспечивает передачу данных со скоростью до 100 Мбит/с. И дальность передачи данных в одном сегменте сети без повторителей – от 100 метров (группа стандартов 100BASE-T, использующая для передачи данных витую пару) до 10 километров (группа стандартов 100BASE-FX, использующая для передачи данных одномодовое оптоволокно).

Gigabit Ethernet обеспечивает передачу данных со скоростью до 1 Гбит/с. И дальность передачи данных в одном сегменте сети без повторителей – от 100 метров (группа стандартов 1000BASE-T, использующая для передачи данных четыре витых пары) до 100 километров (группа стандартов 1000BASE-LH, использующая для передачи данных одномодовое оптоволокно).

Для передачи больших объемов информации существуют стандарты десяти, сорока и ста гигабитного Ethernet, работающего на базе оптоволоконных линий связи. Но более подробно об этих стандартах и вообще о технологии Ethernet будет описано в отдельной статье, посвященной межмашинному взаимодействию.

Wi-Fi – беспроводная линия связи, созданная в 1991 году в Нидерландской компанией NCR Corporation/AT&T. WiFi основывается на стандарте IEEE 802.11. и используется, как для связи с периферийными устройствами, так и для организации локальных сетей.

Wi-Fi позволяет соединять два компьютера или компьютер и периферийное устройство напрямую по технологии точка-точка, либо организовывать сеть с использованием точки доступа, к которой одновременно могут подключаться несколько устройств.

Максимальная скорость передачи данных зависит от используемой ревизии стандарта IEEE 802.11, но на практике будет значительно ниже заявленных параметров, из-за накладных расходов, наличия препятствий на пути распространения сигнала, расстояния между источником сигнала и приемником и других факторов. На практике средняя пропускная способность в лучшем случае будет в 2-3 раза меньше заявленной максимальной пропускной способности.

В зависимости от ревизии стандарта пропускная способность Wi-Fi следующая:

Ревизия стандарта Тактовая частота Заявленная максимальная мощность Средняя скорость передачи данных на практике Дальность связи в помещении/открытой местности
802.11a 5 ГГц 54 Мбит/с 18.4 Мбит/с 35/120 м
802.11b 2.4 ГГц 11 Мбит/с 3.2 Мбит/с 38/140 м
802.11g 2.4 ГГц 54 Мбит/с 15.2 Мбит/с 38/140 м
802.11n 2.4 или 5 ГГц 600 Мбит/с 59.2 Мбит/с 70/250 м

Существует множество других интерфейсов для связи с периферийными устройствами и организации локальных сетей. Однако они редко встраиваются в материнскую плату и обычно используются в виде плат расширения. Поэтому эти интерфейсы, наравне с описанными выше, будем рассматривать в статье посвященной межмашинному взаимодействию, а сейчас перейдем к описанию интерфейсов связи южного моста с жесткими дисками.

3.2.3. Интерфейсы шин связи южного моста с жесткими дисками.

Первоначально для связи с жесткими дисками использовался интерфейс ATA, но позже он был вытеснен более удобными и современными интерфейсами SATA и SCSI. Приведем краткий обзор этих интерфейсов.

ATA (Advanced Technology Attachment) или PATA (Parallel ATA) – параллельный интерфейс связи, разработанный в 1986 году компанией Western Digital. В то время он назывался IDE (Integrated Drive Electronics), но позже был переименован в ATA, а с появлением в 2003 году интерфейса SATA, PATA был переименован в PATA.

Использование интерфейса PATA подразумевает, что контроллер жесткого диска располагается не на материнской плате или в виде платы расширения, а встроен в сам жесткий диск. На материнской плате, а именно в южном мосте, располагается только контроллер канала PATA.

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный шлейф. С введением режима PATA/66 появилась его 80-проводная версия. Максимальная длина шлейфа – 46 см. К одному шлейфу можно подключить и два устройства, при этом одно из них обязательно должно быть ведущим, а другое – ведомым.

Существует несколько ревизий интерфейса PATA, отличающиеся скоростью передачи данных, режимами работы и другими особенностями. Ниже приведены основные ревизии интерфейса PATA.

На практике пропускная способность шины гораздо ниже заявленной теоретической пропускной способности, из-за накладных расходов на организацию протокола обмена и других задержек. К тому же, если к шине подключено два жестких диска, то пропускная способность будет делиться между ними.

В 2003 году на замену интерфейса PATA пришел интерфейс SATA.

SATA (Serial ATA) – последовательный интерфейс связи южного моста с жесткими дисками, разработанный в 2003 году.

При использовании интерфейса SATA каждый накопитель подключается своим кабелем. Причем кабель значительно уже и удобнее кабеля, используемого в интерфейсе PATA, и имеет максимальную длину до 1 метра. Отдельным кабелем на жесткий диск подается питание.

И даже, несмотря на то, что общее количество кабелей увеличивается, по сравнению с интерфейсом PATA, так как каждый накопитель подключается двумя кабелями, свободного места внутри системного блока становится значительно больше. Это приводит к улучшению КПД системы охлаждения, упрощает доступ к различным элементам компьютера, да и выглядит изнутри системный блок более презентабельно.

На данный момент существует три основных ревизии интерфейса SATA. В таблице ниже приведены основные параметры ревизий.

Особняком от этих интерфейсов стоит интерфейс SCSI.

SCSI (Small Computer System Interface) – универсальная шина для подключения высокоскоростных устройств, таких как: жесткие диски, приводы DVD и Blue-Ray, сканеры, принтеры и так далее. Шина обладает высокой пропускной способностью, но сложно устроенная и дорогостоящая. Поэтому в основном применяется в серверах и промышленных вычислительных системах.

Первая ревизия интерфейса была представлена в 1986 году. На данный момент существует около 10 ревизий шины. В таблице ниже приведены основные параметры наиболее популярных ревизий.

Ревизия интерфейса Разрядность Частота передачи данных Макс. пропускная способность Длина кабеля (м) Макс. кол-во устройств Год выхода
SCSI-1 8 бит 5 МГц 40 МБит/с 6 8 1986
SCSI-2 8 бит 10 МГц 80 МБит/с 3 8 1989
SCSI-3 8 бит 20 МГц 160 МБит/с 3 8 1992
Ultra-2 SCSI 8 бит 40 МГц 320 МБит/с 12 8 1997
Ultra-3 SCSI 16 бит 80 МГц 1.25 ГБит/с 12 16 1999
Ultra-320 SCSI 16 бит 160 МГц 2.5 ГБит/с 12 16 2001
Ultra-640 SCSI 16 бит 320 МГц 5 ГБит/с 12 16 2003

Увеличение пропускной способности параллельного интерфейса сопряжено с рядом трудностей и, в первую очередь, это защита от электромагнитных помех. А каждая линия связи является источником электромагнитных помех. Чем больше линий связи будет в параллельной шине, тем больше они будут создавать помех друг для друга. Чем выше частота передачи данных, тем больше электромагнитных помех, и тем сильнее они оказывают влияние на передачу данных.

Кроме этой проблемы есть менее существенные, такие как:

  • сложность и высокая цена производства параллельной шины;
  • проблемы в синхронной передаче данных по всем линиям шины;
  • сложность устройства и высокая цена контроллеров шины;
  • сложность организации полнодуплексного устройства;
  • сложность обеспечения каждого устройства своей шиной и т.д.

В результате, проще отказаться от параллельного интерфейса в пользу последовательного с большей тактовой частотой. При необходимости можно использовать несколько последовательных линий связи, располагающихся дальше друг от друга и защищенных экранирующей оплеткой. Так поступили при переходе от параллельной шины PCI к последовательной PCI express, от PATA к SATA. По тому же пути развития пошла и шина SCSI. Так в 2004 году появился интерфейс SAS.

SAS (Serial Attached SCSI) – последовательная шина типа точка-точка, заменившая параллельную шину SCSI. Для обмена по шине SAS используется командная модель SCSI, но пропускная способность увеличена до 6 Гбит/с (ревизия SAS 2, вышедшая в 2010 году).

В 2012 году планируется выпуск ревизии SAS 3, обладающей пропускной способностью – 12 Гбит/с, однако устройства, поддерживающие эту ревизию, в массовом порядке начнут появляться не раньше 2014 года.

Также не стоит забывать, что шина SCSI была общая, позволяющая подключать до 16 устройств, и все устройства делили между собой пропускную способность шины. А шина SAS использует топологию точка-точка. А, следовательно, каждое устройство подключается своей линией связи и получает всю пропускную способность шины.

Контроллер SCSI и SAS встраивается в материнскую плату редко, так как они достаточно дорогостоящие. Обычно они подключаются, как платы расширения к шине PCI или PCI express.

3.2.4. Интерфейсы связи с медленными компонентами материнской платы.

Для связи с медленными компонентами материнских плат, например, с пользовательским ПЗУ или контроллерами низкоскоростных интерфейсов, используются специализированные шины, такие как: ISA, MCA, LPS и другие.

Шина ISA (Industry Standard Architecture) – 16-разрядная шина, разработанная в 1981 году. ISA работала на тактовой частоте 8 МГц, и обладала пропускной способностью до 8 Мбайт/с. Шина давно устарела и на практике не используется.

Альтернативой шине ISA была шина MCA (Micro Channel Architecture), разработанная в 1987 году компанией Intel. Эта шина была 32-х разрядная с частотой передачи данных – 10 МГц, и пропускной способностью – до 40 Мбит/с. Поддерживала технологию Plug and Play. Однако закрытость шины и жесткая лицензионная политика компании IBM сделали ее непопулярной. На данный момент шина на практике не используется.

Настоящей заменой для ISA стала шина LPC (Low Pin Count), разработанная компанией Intel в 1998 году и используемая по сей день. Работает шина на тактовой частоте – 33,3 МГц, что обеспечивает пропускную способность в 16,67 МБит/с.

Пропускная способность шины совсем небольшая, но для связи с медленными компонентами материнской платы вполне достаточная. С помощью этой шины к южному мосту подключается многофункциональный контроллер (Super I/O), в состав которого входят контроллеры медленных интерфейсов связи и периферийных устройств:

  • параллельного интерфейса;
  • последовательного интерфейса;
  • инфракрасного порта;
  • интерфейса PS/2;
  • накопителя на гибком магнитном диске и других устройств.

Также Шина LPC обеспечивает доступ к BIOS’у, о котором мы поговорим в следующей части нашей статьи.

4. BIOS (Basic Input-Output System).

BIOS (Basic Input-Output System - базовая система ввода-вывода) – это программа, прошитая в постоянное запоминающее устройство (ПЗУ). В нашем случае ПЗУ встроено в материнскую плату, однако своя версия BIOS присутствует почти во всех элементах ЭВМ (в видеокарте, в сетевой карте, дисковых контроллерах и т.д.), да и вообще почти во всем электронном оборудовании (и в принтере, и в видеокамере, и в модеме, и т.д.).

BIOS материнской платы отвечает за проверку работоспособности контроллеров, встроенных в материнскую плату, и большинства устройств, подключенных к ней (процессора, памяти, видеокарты, жестких дисков и т.д.). Происходит проверка при включении питания компьютера в программе Power-On Self Test (POST).

Далее BIOS производит инициализацию контроллеров, встроенных в материнскую плату, и некоторых подключенных к ним устройств, и устанавливает их базовые параметры работы, например, частоту работы системной шины, процессора, контроллера ОЗУ, параметры работы жестких дисков, контроллеров встроенных в материнскую плату и т.д.

Если проверяемые контроллеры и аппаратура исправны и настроены, то BIOS передает управление операционной системе.

Пользователи могут управлять большинством параметров работы BIOS и даже обновлять его.

Обновление BIOS требуется очень редко, если, например, разработчиками обнаружена и устранена принципиальна ошибка в программе инициализации какого-либо из устройств, либо если требуется поддержка нового устройства (например, новой модели процессора). Но, в большинстве случаев, выход нового типа процессора или памяти требует кардинального «абгрейда» компьютера. Скажем за это производителям электроники «спасибо».

Для настройки параметров BIOS предусмотрено специально меню, войти в которое можно, нажав сочетание клавиш, указанное на экране монитора во время проведения тестов POST. Обычно для входа в меню настройки BIOS требуется нажать клавишу DEL.

В этом меню можно установить системное время, параметры работы дисководов и жестких дисков, увеличить (или уменьшить) тактовую частоту процессора, памяти и системной шины, шин связи и настроить другие параметры работы компьютера. Однако тут стоит быть крайне осторожным, так как неправильно установленные параметры могут привести к ошибкам в работе или даже вывести компьютер из строя.

Все настройки BIOS хранятся в энергозависимой памяти CMOS, работающей от батарейки или аккумулятора, установленного на материнской плате. Если батарейка или аккумулятор разрядились, то компьютер может не включиться или работать с ошибками. Например, будет установлено неверное системное время или параметры работы некоторых устройств.

5. Другие элементы материнской платы.

Кроме описанных выше элементов на материнской плате располагается генератор тактовой частоты, состоящий из кварцевого резонатора и тактового генератора. Генератор тактовой частоты состоит из двух частей, так как кварцевый резонатор, не способен генерировать импульсы с частотой, требуемой для работы современных процессоров, памяти и шин, поэтому тактовую частоту, генерируемую кварцевым резонатором, изменяют с помощью тактового генератора, умножающего или делящего исходные частоты для получения требуемой частоты.

Основная задача тактового генератора материнской платы – это формирование высокостабильного периодического сигнала для синхронизации работы элементов ЭВМ.

Частота тактовых импульсов во многом определяет скорость вычислений. Так как на любую операцию, выполняемую процессором, затрачивается определенное количество тактов, то, следовательно, чем выше тактовая частота, тем выше производительность процессора. Естественно, это верно только для процессоров с одинаковой микроархитектурой, так как в процессорах с различной микроархитектурой для выполнения одной и той же последовательности команду может требоваться разное количество тактов.

Генерируемую тактовую частоту можно увеличивать, тем самым, поднимая производительность ЭВМ. Но этот процесс сопряжен с рядом опасностей. Во-первых, при повышении тактовой частотой снижается стабильность работы компонентов ЭВМ, поэтому после любого «разгона» ЭВМ требуется проводить серьезное тестирования для проверки стабильности ее работы.

Также «разгон» может привести к повреждению элементов ЭВМ. Причем выход из строя элементов будет, скорее всего, не мгновенный. Просто может резко сократиться срок службы элементов, эксплуатируемых в условиях, отличных от рекомендуемых.

Кроме тактового генератора на материнской плате располагается множество конденсаторов, обеспечивающих ровный поток напряжения. Дело в том, что потребление энергии элементами ЭВМ, подключенными к материнской плате, может резко изменяться, особенно при приостановке работы и ее возобновлении. Конденсаторы сглаживают такие скачки напряжения, тем самым, повышая стабильность работы и срок службы всех элементов ЭВМ.

Пожалуй, это все основные компоненты современных материнских плат и на этом обзор устройства материнской платы можно закончить.